The Annals of Probability

Limit theorems for products of positive random matrices

H. Hennion

Full-text: Open access


Let $S$ be the set of $q \times q$ matrices with positive entries, such that each column and each row contains a strictly positive element, and denote by $S^\circ$ the subset of these matrices, all entries of which are strictly positive. Consider a random ergodic sequence $(X_n)_{n \geq1}$ in $S$. The aim of this paper is to describe the asymptotic behavior of the random products $X^{(n)} =X_n \ldots X _1, n\geq 1$ under the main hypothesis $P(\Bigcup_{n\geq 1}[X^{(n)}\in S^\circ])>0$. We first study the behavior “in direction” of row and column vectors of $X^{(n)}$. Then, adding a moment condition, we prove a law of large numbers for the entries and lengths of these vectors and also for the spectral radius of $X^{(n)}$ . Under the mixing hypotheses that are usual in the case of sums of real random variables, we get a central limit theorem for the previous quantities. The variance of the Gaussian limit law is strictly positive except when $(X^{(n)})_{n\geq 1}$ is tight. This tightness property is fully studied when the $X_n, n\geq 1$, are independent.

Article information

Ann. Probab. Volume 25, Number 4 (1997), 1545-1587.

First available in Project Euclid: 7 June 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60F99: None of the above, but in this section 60F05: Central limit and other weak theorems

Positive random matrices mixing limit theorems


Hennion, H. Limit theorems for products of positive random matrices. Ann. Probab. 25 (1997), no. 4, 1545--1587. doi:10.1214/aop/1023481103.

Export citation


  • [1] Arnold, L., Demetrius, L. and Gundlach, V. M. (1994). Evolutionary formalism for products of positive random matrices. Ann. Appl. Probab. 4 859-901.
  • [2] Bougerol, P. (1987). Tightness of products of random matrices and stability of linear stochastic systems. Ann. Probab. 15 40-74.
  • [3] Bougerol, P. and Lacroix, J. (1985). Products of Random Matrices with Applications to Schr¨odinger Operators. Birkh¨auser, Boston.
  • [4] Bushell, P. J. (1973). Hilbert's metric and positive contraction mappings in a Banach space. Arch. Rational Mech. Anal. 52 330-338.
  • [5] Cohen, J. (1986). Products of random matrices and related topics in mathematics and science-a bibliography. Contemp. Math. 50 337-358.
  • [6] Cohn, H., Nerman, O. and Peligrad, M. (1993). Weak ergodicity and products of random matrices. J. Theoret. Probab. 6 389-405.
  • [7] Cornfeld, I. P., Fomin, S. V. and Sinai, Ya. (1982). Ergodic Theory. Springer, New York.
  • [8] Doukhan, P. (1994). Mixing: Properties and Examples. Lecture Notes in Statist. 85. Springer, New York.
  • [9] D ¨urr, D. and Goldstein, S. (1984). Remarks on the CLT for weakly dependent random variables. Lecture Notes in Math. 1158. Springer, New York.
  • [10] Durrett, R. (1991). Probability: Theory and Examples. Wadsworth and Brooks/Cole, Monterey, CA.
  • [11] Esseen, C. G. and Janson, S. (1985). On moment conditions for sums of independent variables and martingale differences. Stochastic Process. Appl. 19 173-182.
  • [12] Evstigneev, C. G. I.V. (1974). Positive matrix-valued cocycles over dynamical systems. Uspehi Mat. Nauk 29 219-226.
  • [13] Ferrero, P. and Schmitt, B. (1988). Produits al´eatoires d'op´erateurs matrices de transfert. Probab. Theory Related Fields 79 227-248.
  • [14] Furstenberg, H. (1963). Non-commuting random products. Trans. Amer. Math. Soc. 108 377-428.
  • [15] Furstenberg, H. and Kesten, H. (1960). Products of random matrices. Ann. Math. Statist. 31 457-469.
  • [16] Gordin, M. I. (1969). The central limit theorem for stationary processes. Soviet Math. Dokl 10 1174-1176.
  • [17] Guivarc'h, Y. and Raugi, A. (1986). Products of random matrices: convergence theorems. Contemp. Math. 50 31-54.
  • [18] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, New York.
  • [19] Hennion, H. (1991). D´erivabilit´e du plus grand exposant caract´eristique des produits de matrices al´eatoires ind´ependantes a coefficients positifs. Ann. Inst. H. Poincar´e Probab. Statist. 27 27-59.
  • [20] Kesten, H. and Spitzer, F. (1984). Convergence in distribution of products of random matrices.Wahrsch. Verw. Gebiete 67 363-386.
  • [21] Kingman, J. F. C. (1973). Subadditive ergodic theory. Ann. Probab. 1 883-899.
  • [22] Kranosel'skij, M. A., Lifshits, Je. A. and Sobolev, A. V. (1980). Positive Linear SystemsThe Method of Positive Operators. Sigma Ser. Appl. Math. Heldermann, Berlin.
  • [23] Ledrappier, F. (1982). Quelques propri´et´es des exposants caract´eristiques. Ecole d'´et´e de Saint-Flour 12. Lecture Notes in Math. 1097. Springer, Berlin.
  • [24] Le Page, E. (1982). Th´eor emes limites pour les produits de matrices al´eatoires. Probability Measures on Groups. Lecture Notes in Math. 928 258-303. Springer, Berlin.
  • [25] Liverani, C. (1996). Central limit theorem for deterministic systems. In International Conference on Dynamical Systems, Montevideo 1995: a Tribute to Ricardo Man´e.
  • [26] Mukherjea, A. (1987). Convergence in distribution of products of random matrices: a semigroup approach. Trans. Amer. Math. Soc. 303 395-411.
  • [27] Pellaumail, J. (1990). Graphes et algorithme de calcul de probabilit´es stationnaires d'un processus markovien discret. Ann. Inst. H. Poincar´e Probab. Statist. 26 121-143.
  • [28] Peres, Y. (1992). Domain of analytic continuation for the top Lyapunov exponent. Ann. Inst. H. Poincar´e Probab. Statist. 28 131-148.
  • [29] Raugi, A. (1983). Une d´emonstration du th´eor eme de Choquet-Deny par les martingales. Ann. Inst. H. Poincar´e Statist. Probab. 19 101-109.
  • [30] Seneta, E. (1981). Nonnegative Matrices and Markov Chains. Springer, New York.
  • [31] Volny, D. (1993). Approximating martingales and the central limit theorem for strictly stationary processes. Stochastic Process. Appl. 44 41-74.