The Annals of Probability

Random walks on discrete groups of polynomial volume growth

Georgios K. Alexopoulos

Full-text: Open access

Abstract

Let $\mu$ be a probability measure with finite support on a discrete group $\Gamma$ of polynomial volume growth. The main purpose of this paper is to study the asymptotic behavior of the convolution powers $\mu^{*n}$ of $\mu$. If $\mu$ is centered, then we prove upper and lower Gaussian estimates. We prove a central limit theorem and we give a generalization of the Berry–Esseen theorem. These results also extend to noncentered probability measures. We study the associated Riesz transform operators. The main tool is a parabolic Harnack inequality for centered probability measures which is proved by using ideas from homogenization theory and by adapting the method of Krylov and Safonov. This inequality implies that the positive $\mu$-harmonic functions are constant. Finally we give a characterization of the $\mu$-harmonic functions which grow polynomially.

Article information

Source
Ann. Probab., Volume 30, Number 2 (2002), 723-801.

Dates
First available in Project Euclid: 7 June 2002

Permanent link to this document
https://projecteuclid.org/euclid.aop/1023481007

Digital Object Identifier
doi:10.1214/aop/1023481007

Mathematical Reviews number (MathSciNet)
MR1905856

Zentralblatt MATH identifier
1023.60007

Subjects
Primary: 43A80: Analysis on other specific Lie groups [See also 22Exx] 60J15 60B15: Probability measures on groups or semigroups, Fourier transforms, factorization 20F65: Geometric group theory [See also 05C25, 20E08, 57Mxx] 22E25: Nilpotent and solvable Lie groups 22E30: Analysis on real and complex Lie groups [See also 33C80, 43-XX]

Keywords
random walk group convolution Harnack inequality heat kernel

Citation

Alexopoulos, Georgios K. Random walks on discrete groups of polynomial volume growth. Ann. Probab. 30 (2002), no. 2, 723--801. doi:10.1214/aop/1023481007. https://projecteuclid.org/euclid.aop/1023481007


Export citation

References

  • [1] ALEXOPOULOS, G. K. (1989). Quelques propriétés des fonctions harmoniques sur les groupes de Lie à croissance polynômiale. C. R. Acad. Sci. Paris Sér. I Math. 308 337-338.
  • [2] ALEXOPOULOS, G. K. (1990). Convolution powers on discrete groups of polynomial volume growth. In Harmonic Analysis and Number Theory: Papers in Honor of Carl S. Herz 21 (S. W. Drury and M. Ram Murty, eds.) 31-57. Amer. Math. Soc., Providence, RI.
  • [3] ALEXOPOULOS, G. K. (1992). An application of homogenisation theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth. Canad. J. Math. 44 1-37.
  • [4] ALEXOPOULOS, G. K. (1993). An application of Homogenization theory to Harmonic analysis on solvable Lie groups of polynomial growth. Pacific J. Math. 159 19-45.
  • [5] ALEXOPOULOS, G. K. (1997). Puissances de convolution sur les groupes à croissance polyn omiale du volume. C. R. Acad. Sci. Paris Sér. I Math. 324 771-776.
  • [6] ALEXOPOULOS, G. K. (1998). Sous-laplaciens et densités centrées sur les groupes de Lie à croissance polyn omiale du volume. C. R. Acad. Sci. Paris Sér. I Math. 326 539-542.
  • [7] ALEXOPOULOS, G. K. (2002). Centered Sub-Laplacians with drift on Lie groups of polynomial volume growth. Mem. Amer. Math. Soc. 155 Number 739.
  • [8] ALEXOPOULOS, G. K. and LOHOUÉ, N. (1993). Sobolev inequalities and harmonic functions of polynomial growth. J. London Math. Soc. 48 452-464.
  • [9] AVELLANEDA, M. and LIN, F. H. (1987). Compactness methods in the theory of Homogenization. Comm. Pure Appl. Math. 40 803-847.
  • [10] AVELLANEDA, M. and LIN, F. H. (1989). Un théorème de Liouville pour des equations elliptiques avec coefficients périodiques. C. R. Acad. Sci. Paris Sér. I Math. 609 245-250.
  • [11] BASS, H. (1972). The degree of polynomial growth of finitely generated nilpotent groups. Proc. London Math. Soc. 25 603-614.
  • [12] BAUMSLAG, G. (1971). Lecture Notes on Nilpotent Groups. Amer. Math. Soc., Providence, RI.
  • [13] BENSOUSSAN, A., LIONS, J. L. and PAPANICOLAOU, G. (1978). Asymptotic Analysis of Periodic Structures. North-Holland, Amsterdam.
  • [14] BERGSTRÖM, H. (1969). On the Central Limit Theorem in Rk.Wahrsch. Verw. Gebiete 14 113-126.
  • [15] CHRIST, M. (1995). Temporal regularity of random walks on discrete nilpotent groups. In Proceedings of the Conference in Honor of J.-P. Kahane 141-151. CRC Press, Boca Raton, FL.
  • [16] CHRIST, M. and GELLER, D. (1984). Singular integral characterizations of Hardy spaces on homogeneous groups. Duke Math. J. 51 547-598.
  • [17] COIFMAN, R. and WEISS, G. (1971). Analyse non-commutative sur certains espaces homogènes. Lecture Notes in Math. 242. Springer, New York.
  • [18] COLDING, T. H. and MINICOZZI, W. P., II (1997). Harmonic functions with polynomial growth. J. Differential Geom. 46 1-77.
  • [19] CRÉPEL, P. and RAUGI, A. (1978). Théorème central limite sur les groupes nilpotents. Ann. Inst. H. Poincaré Probab. Statist. 14 145-164.
  • [20] FELLER, W. (1971). An Introduction to the Theory of Probability and Its Applications 2. Wiley, New York.
  • [21] FOLLAND, G. B. and STEIN, E. (1982). Hardy Spaces on Homogeneous Groups. Princeton Univ. Press.
  • [22] GROMOV, M. (1981). Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53 53-78.
  • [23] HEBISCH, W. and SALOFF-COSTE, L. (1993). Gaussian estimates for Markov chains and random walks on groups. Ann. Probab. 21 673-709.
  • [24] HÖRMANDER, L. H. (1967). Hypoelliptic second order differential operators. Acta. Math. 16 147-171.
  • [25] JACOBSON, N. (1962). Lie Algebras. Wiley, New York.
  • [26] JIKOV, V. V., KOZLOV, S. M. and OLEINIK, O. A. (1994). Homogenization of Differential Operators and Integral Functionals. Springer, New York.
  • [27] KENIG, C. E. (1994). Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems. Amer. Math. Soc., Providence, RI.
  • [28] KOZLOV, S. M. (1980). Asymptotics of fundamental solutions for second order differential equations. Mat. Sb. 113 302-323. [English translation (1982) Math. USSR.-Sb. 41 249-267.]
  • [29] KRYLOV, N. V. and SAFONOV, M. V. (1981). A certain property of solutions of parabolic equations with measurable coefficients. Math. USSR-Izv. 16 151-164.
  • [30] LAWLER, G. F. (1991). Estimates for differences and Harnack inequality for difference operators coming from random walks with symmetric, spacially inhomogeneous, increments. Proc. London Math. Soc. 63 552-568.
  • [31] LOHOUÉ, N. and VAROPOULOS, N. TH. (1985). Remarques sur les transformés de Riesz sur les groupes de Lie nilpotents. C. R. Acad. Sci. Paris Sér. I Math. 301 11.
  • [32] MOUSTAPHA, S. and VAROPOULOS, N. TH. Cambridge Univer. Press. To appear.
  • [33] NAGEL, A., RICCI, F and STEIN, E. (1990). Harmonic Analysis and fundamental solutions on nilpotent Lie groups. In Analysis and Partial Differential Equations: A Collection of Papers Dedicated to M. Cotlar (C. Sadosky ed.) 249-275. Dekker, New York.
  • [34] PETROV, V. V. (1975). Sums of Independent Random Variables. Springer, New York.
  • [35] RAGHUNATHAN, M. S. (1972). Discrete Subgroups of Lie Groups. Springer, New York.
  • [36] RAUGI, A. (1978). Théorème de la limite centrale sur les groupes de Lie nilpotents.Wahrsch. Verw. Gebiete 43 149-172.
  • [37] RAUGI, A. (1978). Théorème de la limite centrale pour un produit semidirect d'un groupe de Lie résoluble simplement connexe de type rigide par un groupe compact. Probability Measures on Groups. Lecture Notes in Math. 706 257-324. Springer, New York.
  • [38] RIESZ, F. and VON SNAGY, B. (1968). Leçons d'analyse fonctionelle, 5th ed. GauthierVillars, Paris.
  • [39] SAFONOV, M. V. (1983). Harnack's inequality for elliptic equations and the Hölder property of their solutions. J. Soviet Math. 21 851-863.
  • [40] SALOFF-COSTE, L. (1990). Analyse sur les groupes de Lie à croissance polyn omiale. Ark. Mat. 28 315-331.
  • [41] SAZONOV, V. V. (1981). Normal Approximation-Some Recent Advances. Lecture Notes in Math. 879. Springer, New York.
  • [42] STEIN, E. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press.
  • [43] STEIN, E. (1993). Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Univ. Press.
  • [44] STROOCK, D. W. (1988). Diffusion semigroups corresponding to uniformly elliptic divergence form operators. Séminaire de probabilités XXII. Lecture Notes in Math. 1321 316-347. Springer, New York.
  • [45] VARADARAJAN, V. S. (1984). Lie Groups, Lie Algebras and Their Representations. Springer, New York.
  • [46] VAROPOULOS, N. TH. (1986). Analysis on nilpotent groups. J. Funct. Anal. 66 406-431.
  • [47] VAROPOULOS, N. TH. (1987). Fonctions harmoniques positives sur les groupes de Lie. C. R. Acad. Sci. Paris Sér. I Math. 304 519-521.
  • [48] VAROPOULOS, N. TH. (1988). Analysis on Lie groups. J. Funct. Anal. 76 346-410.
  • [49] VAROPOULOS, N. TH. (1994). Wiener-Hopf theory and nonunimodular groups. J. Funct. Anal. 120 467-483.
  • [50] VAROPOULOS, N. TH., SALOFF-COSTE, L. and COULHON, TH. (1993). Analysis and Geometry on Groups. Cambridge Univ. Press.
  • [51] ZHIKOV, V. V. (1989). Spectral approach to asymptotic diffusion problems. Differensial'nye Uravneniya 25 44-50. [English translation (1989) Differential Equations 25 33-39.]