The Annals of Probability

Fluctuations of the free energy in the REM and the $p$-spin SK models

Anton Bovier, Irina Kurkova, and Matthias Löwe

Full-text: Open access

Abstract

We consider the random fluctuations of the free energy in the $p$-spin version of the Sherrington–Kirkpatrick (SK) model in the high-temperature regime. Using the martingale approach of Comets and Neveu as used in the standard SK model combined with truncation techniques inspired by a recent paper by Talagrand on the $p$-spin version, we prove that the random corrections to the free energy are on a scale $N^{-(p-2)/2}$ only and, after proper rescaling, converge to a standard Gaussian random variable. This is shown to hold for all values of the inverse temperature, $\beta$, smaller than a critical $\beta_p$. We also show that $\beta_p \to \sqrt{2 \ln 2}$ as $p \uparrow + \infty$. Additionally, we study the formal $p \uparrow + \infty$ limit of these models, the random energy model. Here we compute the precise limit theorem for the (properly rescaled) partition function at all temperatures. For $\beta < \sqrt{2 \ln 2}$, fluctuations are found at an exponentially small scale, with two distinct limit laws above and below a second critical value $\sqrt{\ln 2/2:}$ for $\beta$ up to that value the rescaled fluctuations are Gaussian, while below that there are non-Gaussian fluctuations driven by the Poisson process of the extreme values of the random energies. For $\beta$ larger than the critical $\sqrt{2 \ln 2}$, the fluctuations of the logarithm of the partition function are on a scale of 1 and are expressed in terms of the Poisson process of extremes. At the critical temperature, the partition function divided by its expectation converges to 1/2.

Article information

Source
Ann. Probab., Volume 30, Number 2 (2002), 605-651.

Dates
First available in Project Euclid: 7 June 2002

Permanent link to this document
https://projecteuclid.org/euclid.aop/1023481004

Digital Object Identifier
doi:10.1214/aop/1023481004

Mathematical Reviews number (MathSciNet)
MR1905853

Zentralblatt MATH identifier
1018.60094

Subjects
Primary: 82C44: Dynamics of disordered systems (random Ising systems, etc.) 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
spin glasses Sherrington-Kirkpatrick model $p$-spin model random energy model central limit theorem extreme values martingales

Citation

Bovier, Anton; Kurkova, Irina; Löwe, Matthias. Fluctuations of the free energy in the REM and the $p$-spin SK models. Ann. Probab. 30 (2002), no. 2, 605--651. doi:10.1214/aop/1023481004. https://projecteuclid.org/euclid.aop/1023481004


Export citation

References

  • [1] AIZENMAN, M., LEBOWITZ, J. L. and RUELLE, D. (1987). Some rigorous results on Sherrington-Kirkpatrick spin glass model. Comm. Math. Phys. 112 3-20.
  • [2] AIZENMAN, M. and WEHR, J. (1990). Rounding effects of quenched randomness of first-order phase transitions. Comm. Math. Phys. 130 489-528.
  • [3] BOVIER, A. (1998). The Kac version of the Sherrington-Kirkpatrick model at high temperatures. J. Statist. Phys. 91 459-474.
  • [4] BOVIER, A. (2001). Statistical Mechanics of Disordered Systems. MaPhySto Lecture Notes 10. Univ. Aarhus.
  • [5] BOVIER, A. and GAYRARD, V. (1996). The retrieval phase of the Hopfield model: a rigorous analysis of the overlap distribution. Probab. Theory Related Fields 107 61-98.
  • [6] BOVIER, A., GAYRARD, V. and PICCO, P. (1995). Gibbs states of the Hopfield model with extensively many patterns. J. Statist. Phys. 79 395-414.
  • [7] BOVIER, A. and MASON, D. (2001). Extreme value behavior in the Hopfield model. Ann. Appl. Probab. 11 91-120.
  • [8] COMETS, F. (1996). A spherical bound for the Sherrington-Kirkpatrick model. Hommage à P. A. Meyer et J. Neveu. Astérisque 236 103-108.
  • [9] COMETS, F. and NEVEU, J. (1995). The Sherrington-Kirkpatrick model of spin glasses and stochastic calculus: the high temperature case. Comm. Math. Phys. 166 549-564.
  • [10] DERRIDA, B. (1980). Random energy model: limit of a family of disordered models. Phys. Rev. Lett. 45 79-82.
  • [11] DERRIDA, B. (1981). Random energy model: an exactly solvable model of disordered systems. Phys. Rev. B 24 2613-2626.
  • [12] DORLAS, T. C. and WEDAGEDERA, J. R. (2001). Large deviations and the random energy model. Internat. J. Modern Phys. B 15 1-15.
  • [13] EISELE, TH. (1983). On a third order phase transition. Comm. Math. Phys. 90 125-159.
  • [14] GALVEZ, A., MARTINEZ, S. and PICCO, P. (1989). Fluctuations in Derrida's random energy and generalized random energy models. J. Statist. Phys. 54 515-529.
  • [15] GARDNER, E. (1985). Spin glasses with p-spin interactions. Nuclear Phys. B 257 747-765.
  • [16] JACOD, J. and SHIRYAEV, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, Berlin.
  • [17] LEADBETTER, M. R., LINDGREN, G. and ROOTZÉN, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer, Berlin.
  • [18] LEDOUX, M. and TALAGRAND, L. (1991). Probability in Banach Space. Springer, Berlin.
  • [19] NEWMAN, CH. M. and STEIN, D. L. (1997). Thermodynamic chaos and the structure of short range spin glasses. In Mathematical Aspects of Spin Glasses and Neural Networks (A. Bovier and P. Picco, eds.). Birkhäuser, Boston.
  • [20] DE OLIVEIRA, V. and FONTANARI, J. F. (1999). Replica analysis of the p-spin interaction Ising spin-glass model. J. Phys. A 32 2285-2296.
  • [21] OLIVIERI, E. and PICCO, P. (1991). On the existence of thermodynamics for the random energy model. Comm. Math. Phys. 96 125-144.
  • [22] REVUZ, D. and YOR, M. (1992). Brownian Motion and Continuous Martingales. Springer, Berlin.
  • [23] RUELLE, D. (1987). A mathematical reformulation of Derrida's REM and GREM. Comm. Math. Phys. 108 225-239.
  • [24] SHERRINGTON, D. and KIRKPATRICK, S. (1972). Solvable model of a spin glass. Phys. Rev. Lett. 35 1792-1796.
  • [25] SHIRYAEV, A. N. (1996). Probability, 2nd ed. Springer, New York.
  • [26] TALAGRAND, M. (1995). Concentration of measure and isoperimetric inequalities in product space. Inst. Hautes Études Sci. Publ. Math. 81 73-205.
  • [27] TALAGRAND, M. (2000). Rigorous low temperature results for mean field p-spin interaction models. Probab. Theory Related Fields 117 303-360.
  • [28] TOUBOL, A. (1998). High temperature regime for a multidimensional Sherrington-Kirkpatrick model of spin glass. Probab. Theory Related Fields 110 497-534.