The Annals of Probability

Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures

S. G. Bobkov

Full-text: Open access

Abstract

We discuss an approach, based on the Brunn–Minkowski inequality, to isoperimetric and analytic inequalities for probability measures on Euclidean space with logarithmically concave densities. In particular, we show that such measures have positive isoperimetric constants in the sense of Cheeger and thus always share Poincaré-type inequalities. We then describe those log-concave measures which satisfy isoperimetric inequalities of Gaussian type. The results are precised in dimension 1.

Article information

Source
Ann. Probab. Volume 27, Number 4 (1999), 1903-1921.

Dates
First available in Project Euclid: 31 May 2002

Permanent link to this document
https://projecteuclid.org/euclid.aop/1022874820

Digital Object Identifier
doi:10.1214/aop/1022874820

Mathematical Reviews number (MathSciNet)
MR1742893

Zentralblatt MATH identifier
0964.60013

Subjects
Primary: 60J75
Secondary: 60G09: Exchangeability 60G57: Random measures 05A18: Partitions of sets

Keywords
Exchangeable random partition ranked frequencies random discrete distribution two-parameter Poisson –Dirichlet stable subordinator coagulation,fragmentation time reversal Ewens sampling formula

Citation

Bobkov, S. G. Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures. Ann. Probab. 27 (1999), no. 4, 1903--1921. doi:10.1214/aop/1022874820. https://projecteuclid.org/euclid.aop/1022874820.


Export citation

References

  • 1 AIDA, S., MASUDA, T. and SHIGEKAWA, I. 1994. Logarithmic Sobolev inequalities and exponential integrability. J. Funct. Anal. 126 83 101.
  • 2 BAKRY, D. and LEDOUX, M. 1996. Levy Gromov isoperimetric inequality for an infinite ´ dimensional diffusion generator. Invent. Math. 123 259 281.
  • 3 BAKRY, D., LEDOUX, M. and QIAN,1997. Preprint.
  • 4 BALL, K. M. 1988. Logarithmically concave functions and sections of convex bodies. Studia Math. 88 69 84.
  • 5 BOBKOV, S. G. 1996. Extremal properties of half-spaces for log-concave distributions. Ann. Probab. 24 35 48.
  • 6 BOBKOV, S. G. 1996. A functional form of the isoperimetric inequality for the Gaussian measure, J. Funct. Anal. 135 39 49.
  • 7 BOBKOV, S. G. 1997. Isoperimetric problem for uniform enlargement. Studia Math. 123 81 95.
  • 8 BOBKOV, S. G. 1997. Isoperimetric problems in the theory of infinite dimensional probability distributions. Ph.D. dissertation, Syktyvkar Univ. in Russian.
  • 9 BOBKOV, S. G. AND GOTZE, F. 1999. Isoperimetric and Poincare-type inequalities. Probab. ¨ ´ Theory Related Fields 114 245 277.
  • 10 BOBKOV, S. G. and GOTZE, F. 1999. Exponential integrability and transportation cost ¨ related to logarithmic Sobolev inequalities. J. Funct. Anal 163 1 28.
  • 11 BOBKOV, S. G. and HOUDRE, C. 1997. Isoperimetric constants for product probability ´ measures. Ann. Probab. 25 184 205.
  • 12 BORELL, C. 1974. Convex measures on locally convex spaces. Ark. Math. 12 239 252.
  • 13 BORELL, C. 1975. The Brunn Minkowski inequality in Gauss space. Invent. Math. 30 207 211.
  • 14 BOROVKOV, A. A. and UTEV, S. A. 1983. On an inequality and related characterization of the normal distribution. Probab. Theory Appl. 28 209 218.
  • 15 BOURGAIN, J. 1986. On high dimensional maximal functions associated to convex bodies. Amer. J. Math. 108 1467 1476.
  • 16 BRASCAMP, H. J. and LIEB, E. H. 1976. On extensions of the Brunn Minkovski and Prekopa Leindler theorems, including inequalities for log-concave functions, and with ´ an application to the diffusion equation. J. Funct. Anal. 22 366 389.
  • 17 CHEEGER, J. A. 1970. A lower bound for the smallest eigenvalue of the Laplacian. In Problems in Analysis. Symposium in Honor of S. Bochner 195 199. Princeton Univ. Press.
  • 18 FRADELIZI, M. 1997. Sections of convex bodies through their zentroid. Arch. Math. 69 515 522.
  • 19 GUEDON, O. 1998. Kahane Khinchine type inequalities for negative exponents. Univ. de ´ Paris 6. Preprint.
  • 20 GROSS, L. 1975. Logarithmic Sobolev inequalities. Amer. J. Math. 97 1061 1083.
  • 21 HENSLEY, D. 1980. Slicing convex bodies bounds for slice area in terms of the body's covariance. Proc. Amer. Math. Soc. 79 619 625.
  • 22 KANNAN, R., LOVASZ, L. and SIMONOVITS, M. 1995. Isoperimetric problems for convex bodies ´ and a localization lemma. Discrete Comput. Geom. 13 541 559.
  • 23 LATALA, R. 1999. Convex Geometric Analysis 123 127. Cambridge Univ. Press.
  • 24 LEDOUX, M. 1994. A simple analytic proof of an inequality by P. Buser. Proc. Amer. Math. Soc. 121 951 959.
  • 25 LEDOUX, M. 1995. Remarks on logarithmic Sobolev constants, exponential integrability and bounds on the diameter. J. Math. Kyoto Univ. 35 211 220.
  • 26 LEDOUX, M. 1996. Isoperimetry and Gaussian analysis. Ecole d'ete de Probabilites de ´ ´ ´ Saint-Flour. Lecture Notes in Math. 1648 165 294. Springer, Berlin.
  • 27 LEDOUX, M. 1997. Concentration of measure and logarithmic Sobolev inequalities. Preprint. Seminaire de Probabilites XXXIII. Lecture Notes in Math. Springer, Berlin. To appear. ´ ´
  • 28 LOVASZ, L. and SIMONOVITS, M. 1993. Random walks in a convex body and an improved ´ volume algorithm. Random Structures Algorithms 4 359 412.
  • 29 MAUREY, B. 1991. Some deviations inequalities. Geom. Funct. Anal. 1 188 197.
  • 30 PISIER, G. 1989. The volume of convex bodies and Banach space geometry. Cambridge Univ. Press.
  • 31 ROTHAUS, O. S. 1985. Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities. J. Funct. Anal. 64 296 313.
  • 32 SUDAKOV, V. N. and TSIREL'SON, B. S. 1978. Extremal properties of half-spaces for spheri cally invariant measures. J. Soviet Math. 9 9 18. Translated from Zap. Nauchn.Semin. Leningr. Otd. Mat. Inst. Steklova. 1974 41 14 24.
  • 33 WANG, F.-Y. 1997. Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab. Theory Related Fields 109 417 424.