The Annals of Probability

Nearest-neighbor walks with low predictability profile and percolation in $2+\epsilon$ dimensions

Olle Häggström and Elchanan Mossel

Full-text: Open access

Abstract

A few years ago, Grimmett, Kesten and Zhang proved that for supercritical bond percolation on $\mathbf{Z}^3$, simple random walk on the infinite cluster is a.s. transient. We generalize this result to a class of wedges in $\mathbf{Z}^3$ including, for any $\varepsilon \epsilon (0, 1)$, the wedge $\mathscr{W}_{\varepsilon} = {(x, y, z) \epsilon \mathbf{Z}^3: x \geq 0, |z| \leq x^{\varepsilon}}$ which can be thought of as representing a $(2 + \varepsilon)$-dimensional lattice. Our proof builds on recent work of Benjamini, Pemantle and Peres, and involves the construction of finite-energy flows using nearest-neighbor walks on Z with low predictability profile. Along the way, we obtain some new results on attainable decay rates for predictability profiles of nearest-neighbor walks.

Article information

Source
Ann. Probab., Volume 26, Number 3 (1998), 1212-1231.

Dates
First available in Project Euclid: 31 May 2002

Permanent link to this document
https://projecteuclid.org/euclid.aop/1022855750

Digital Object Identifier
doi:10.1214/aop/1022855750

Mathematical Reviews number (MathSciNet)
MR1640343

Zentralblatt MATH identifier
0937.60071

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60J45: Probabilistic potential theory [See also 31Cxx, 31D05]
Secondary: 60J15

Keywords
Percolation random walk transience predictability profile Ising model

Citation

Häggström, Olle; Mossel, Elchanan. Nearest-neighbor walks with low predictability profile and percolation in $2+\epsilon$ dimensions. Ann. Probab. 26 (1998), no. 3, 1212--1231. doi:10.1214/aop/1022855750. https://projecteuclid.org/euclid.aop/1022855750


Export citation

References

  • [1] Antal, P. and Pisztora, A. (1996). On the chemical distance in supercritical Bernoulli percolation. Ann. Probab. 24 1036-1048.
  • [2] Benjamini, I., Pemantle, R. and Peres, Y. (1996). Random walks in varying dimensions, J. Theoret. Probab. 9 221-244.
  • [3] Benjamini, I., Pemantle, R. and Peres, Y. (1998). Unpredictable paths and percolation, Ann. Probab. 26 1198-1211.
  • [4] Bleher, P. M., Ruiz, J. and Zagrebnov, V. A. (1995). On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice. J. Statist. Phys. 79 473-482.
  • [5] Chayes, J. T. and Chayes, L. (1986). Critical points and intermediate phases on wedges of Zd. J. Phys. A 19 3033-3048.
  • [6] Doyle, P. and Snell, J. L. (1984). Random Walks and Electric Networks. Mathematical Monograph 22. Math. Assoc. Amer., Washington, D.C.
  • [7] Grimmett, G. (1989). Percolation. Springer, New York.
  • [8] Grimmett, G., Kesten, H. and Zhang, Y. (1993). Random walk on the infinite cluster of the percolation model. Probab. Theory Related Fields 96 33-44.
  • [9] Grimmett, G. and Marstrand, J. M. (1990). The supercritical phase of percolation is well behaved. Proc. Roy. Soc. London Ser. A 430 439-457.
  • [10] Hoffman, C. (1997). Unpredictable nearest neighbor processes. Preprint.
  • [11] Levin, D. and Peres, Y. (1998). Energy and cutsets in infinite percolation clusters. In Proceedings of the Cortona Workshop on Random Walks and Discrete Potential Theory (M. Piccardello and W. Woess, eds.). To appear.
  • [12] Lyons, R. (1989). The Ising model and percolation on trees and tree-like graphs. Comm. Math. Phys. 125 337-353.
  • [13] Lyons, T. (1983). A simple criterion for transience of a reversible Markov chain. Ann. Probab. 11 393-402.
  • [14] Polya, G. (1921). ¨Uber eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz. Math. Ann. 84 149-160.
  • [15] R´ev´esz, P. (1990). Random Walk in Random and Non-random Environments. World Scientific, Singapore.
  • [16] Scott, D. (1990). A non-integral-dimensional random walk. J. Theoret. Probab. 3 1-7.
  • [17] Solomon, F. (1975). Random walks in a random environment. Ann. Probab. 3 1-31.
  • [18] Torrez, W. C. (1978). The birth and death chain in a random environment: instability and extinction theorems. Ann. Probab. 6 1026-1043.