The Annals of Probability

On the Existence and Nonexistence of Finitary Codings for a Class of Random Fields

J. E. Steif and J. van den Berg

Full-text: Open access

Abstract

We study the existence of finitary codings (also called finitary homomorphisms or finitary factor maps) from a finite-valued i.i.d. process to certain random fields. For Markov random fields we show, using ideas of Marton and Shields, that the presence of a phase transition is an obstruction for the existence of the above coding; this yields a large class of Bernoulli shifts for which no such coding exists.

Conversely, we show that, for the stationary distribution of a monotone exponentially ergodic probabilistic cellular automaton, such a coding does exist. The construction of the coding is partially inspired by the Propp–Wilson algorithm for exact simulation.

In particular, combining our results with a theorem of Martinelli and Olivieri, we obtain the fact that for the plus state for the ferromagnetic Ising model on $\mathbf{Z}^d, d \geq 2$, there is such a coding when the interaction parameter is below its critical value and there is no such coding when the interaction parameter is above its critical value.

Article information

Source
Ann. Probab., Volume 27, Number 3 (1999), 1501-1522.

Dates
First available in Project Euclid: 29 May 2002

Permanent link to this document
https://projecteuclid.org/euclid.aop/1022677456

Digital Object Identifier
doi:10.1214/aop/1022677456

Mathematical Reviews number (MathSciNet)
MR1733157

Zentralblatt MATH identifier
0968.60091

Subjects
Primary: 28D99: None of the above, but in this section
Secondary: 60K35 82B20 82B26: Phase transitions (general)

Keywords
Ising model random fields phase transitions finitary coding

Citation

van den Berg, J.; Steif, J. E. On the Existence and Nonexistence of Finitary Codings for a Class of Random Fields. Ann. Probab. 27 (1999), no. 3, 1501--1522. doi:10.1214/aop/1022677456. https://projecteuclid.org/euclid.aop/1022677456


Export citation

References

  • [1] Adams, S. (1992). F¨olner Independence and the amenable Ising model. Ergodic Theory Dynam. Systems 12 633-657.
  • [2] Aizenman, M., Barsky, D. J. and Fernandez, R. (1987). The phase transition in a general class of Ising-type models is sharp. J. Statist Phys. 47 343-374.
  • [3] Aizenman, M. and Fernandez, R. (1986). On the critical behavior of the magnetization in high-dimensional Ising models. J. Statist Phys. 44 393-454.
  • [4] Akcoglu, M. A., del Junco, A. and Rahe, M. (1979). Finitary codes between Markov processes.Wahrsch. Verw. Gebiete 47 305-314.
  • [5] Blum, J. R. and Hanson, D. (1963). On the isomorphism problem for Bernoulli schemes. Bull. Amer. Math. Soc. 69 221-223.
  • [6] Burton, R. M. and Steif, J. E. (1994). Nonuniqueness of measures of maximal entropy for subshifts of finite type. Ergodic Theory Dynam. Systems 14 213-235.
  • [7] Burton, R. M. and Steif, J. E. (1995). New results on measures of maximal entropy, Israel J. Math. 89 275-300.
  • [8] Burton, R. M. and Steif, J. E. (1996). Some 2-d symbolic dynamical systems: entropy and mixing. In Ergodic Theory of Zd Actions (M. Pollicott and K. Schmidt, eds.) 297-305. Cambridge Univ. Press.
  • [9] Csiszar, I. and Korner, J. (1981). Information Theory: Coding Theorems for Discrete Memoryless Systems. Academic Press, New York.
  • [10] del Junco, A. (1980). Finitary coding of Markov random fields.Wahrsch. Verw. Gebiete 52 193-202.
  • [11] den Hollander, F. and Steif, J. E. (1997). On K-automorphisms, Bernoulli shifts and Markov random fields. Ergodic Theory Dynam. Systems 17 405-415.
  • [12] den Hollander, F. and Steif, J. E. (1998). On the equivalence of certain ergodic properties for Gibbs states. Ergodic Theory Dynam. Systems. To appear.
  • [13] Dobrushin, R. L. (1972). Gibbs states describing coexistence of phases for a threedimensional Ising model. Theory Probab. Appl. 17 582-600.
  • [14] Ellis, R. S. (1985). Entropy, Large Deviations, and Statistical Mechanics. Springer, New York.
  • [15] F ¨ollmer, H. and Orey, S. (1988). Large deviations for the empirical field of a Gibbs measure. Ann. Probab. 16 961-977.
  • [16] Friedman, N. A. and Ornstein, D. (1971). On isomorphism of weak Bernoulli transformations. Adv. Math. 5 365-394.
  • [17] Georgii, H. (1988). Gibbs Measures and Phase Transitions. de Gruyter, New York.
  • [18] Higuchi, Y. (1993). Coexistence of infinite -clusters. II. Ising percolation in two dimensions. Probab. Theory Related Fields 97 1-33.
  • [19] Hoffman, C. (1999). A Markov random field which is K but not Bernoulli. Israel J. Math. To appear.
  • [20] Katznelson, Y. and Weiss, B. (1972). Commuting measure-preserving transformations. Israel J. Math. 12 161-173.
  • [21] Keane, M. and Smorodinsky, M. (1977). A class of finitary codes. Israel J. Math. 26 352- 371.
  • [22] Keane, M. and Smorodinsky, M. (1979). Bernoulli schemes of the same entropy are finitarily isomorphic. Ann. Math. 109 397-406.
  • [23] Keane, M. and Smorodinsky, M. (1979). Finitary isomorphisms of irreducible Markov shifts. Israel J. Math. 34 281-286.
  • [24] Lieb, E. H. (1980). A refinement of Simon's correlation inequality. Comm. Math. Phys. 77 127-135.
  • [25] Liggett, T. M. (1985). Interacting Particle Systems. Springer, Berlin.
  • [26] Lind, (1982). Ergodic group automorphisms are exponentially recurrent. Israel J. Math. 41 313-320.
  • [27] Maes, C. and Shlosman, S. B. (1993). When is an interacting particle system ergodic? Comm. Math. Phys. 151 447-466.
  • [28] Martinelli, F. and Olivieri, E. (1994). Approach to equilibrium of Glauber dynamics in the one phase region. I. The attractive case. Comm. Math. Phys. 161 447-486.
  • [29] Marton, K. (1998). The blowing-up property for processes with memory. Unpublished manuscript.
  • [30] Marton, K. and Shields, P. (1994). The positive-divergence and blowing-up properties. Israel J. Math. 86 331-348.
  • [31] Meshalkin, L. D. (1959). A case of isomorphism of Bernoulli schemes. Dokl. Akad. Nauk. SSSR 128 41-44.
  • [32] Monroy, G. and Russo, B. (1975). A family of codes between some Markov and Bernoulli schemes. Comm. Math. Phys. 43 155-159.
  • [33] Ornstein, D. S. (1974). Ergodic Theory, Randomness and Dynamical Systems. Yale Univ. Press.
  • [34] Ornstein, D. S. and Weiss, B. (1973). Zd-actions and the Ising model. Unpublished manuscript.
  • [35] Ornstein, D. S. and Weiss, B. (1987). Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math. 48 1-141.
  • [36] Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures Algorithms 9 223-252.
  • [37] Schmidt, K. (1995). Dynamical Systems of Algebraic Origin. Birkh¨auser, Boston.
  • [38] Simon, B. (1980). Correlation inequalities and the decay of correlations in ferromagnets. Comm. Math. Phys. 77 111-126.
  • [39] Slawny, J. (1981). Ergodic properties of equilibrium states. Comm. Math. Phys. 80 477-483.
  • [40] Steif, J. E. (1988). The ergodic structure of interacting particle systems. Ph.D. dissertation, Stanford Univ.
  • [41] Talagrand, M. (1995). Concentration of measure and isoperimetric inequalities in product spaces. Publications I.H.E.S. 81 73-205.