The Annals of Probability

Review of “Stochastic Analysis” by Paul Malliavin

Denis Bell

Full-text: Open access

Article information

Source
Ann. Probab., Volume 30, Number 1 (2002), 474-479.

Dates
First available in Project Euclid: 29 April 2002

Permanent link to this document
https://projecteuclid.org/euclid.aop/1020107776

Digital Object Identifier
doi:10.1214/aop/1020107776

Mathematical Reviews number (MathSciNet)
MR

Citation

Bell, Denis. Review of “Stochastic Analysis” by Paul Malliavin. Ann. Probab. 30 (2002), no. 1, 474--479. doi:10.1214/aop/1020107776. https://projecteuclid.org/euclid.aop/1020107776


Export citation

References

  • [1] BELL, D. (1982). Some properties of measures induced by solutions of stochastic differential equations. Ph.D. thesis, Univ. Warwick.
  • [2] BELL, D. and MOHAMMED, S. (1995). An extension of Hörmander's theorem for infinitely degenerate differential operators. Duke Math. J. 78 453-475.
  • [3] BISMUT, J. M. (1981). Martingales, the Malliavin calculus and hypoellipticity under general Hörmander's conditions.Wahrsch. Verw. Gebiete 56 529-548.
  • [4] BISMUT, J. M. (1984). Large Deviations and the Malliavin Calculus. Birkhäuser, Boston.
  • [5] BISMUT, J. M. (1984). The Atiyah-Singer theorems for classical eliptic operators: a probabilistic approach, I; the index theorem. J. Funct. Anal. 57 56-99.
  • [6] DRIVER, B. (1992). A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact manifold. J. Funct. Anal. 109 272-376.
  • [7] GROSS, L. (1967). Potential theory on Hilbert space. J. Funct. Anal. 1 123-181.
  • [8] KUSUOKA, S. and STROOCK, D. (1985). Applications of the Malliavin calculus II. J. Fac. Sci. Univ. Tokyo 32 1-76.
  • [9] MALLIAVIN, P. (1976). Stochastic calculus of variations and hypoelliptic operators. In Proceedings of the International Conference on Stochastic Differential Equations 195- 263. Wiley, New York.
  • [10] MALLIAVIN, P. (1978). Ck-hypoellipticity with degeneracy. In Stochastic Analysis (A. Friedman and M. Pinsky, eds.) 199-214, 327-340. Academic Press, New York.
  • [11] MICHEL, D. (1981). Régularité des lois conditionnelles en théorie du filtrage non-lineaire et calcul des variations stochastique. J. Funct. Anal. 41 1-36.
  • [12] NUALART, D. and PARDOUX, E. (1988). Stochstic calculus with anticipating integrands. Probab. Theory Related Fields 78 535-581.
  • [13] OCONE, D. (1984). Malliavin's calculus and stochastic integral representation of functionals of diffusion processes. Stochastics 12 161-185.
  • [14] SHIGEKAWA, I. (1980). Derivatives of Wiener functionals and absolute continuity of induced measures. J. Math. Kyoto Univ. 20 263-289.
  • [15] STROOCK, D. (1981). The Malliavin calculus, a functional analytic approach. J. Funct. Anal. 44 212-257.
  • JACKSONVILLE, FLORIDA 32224 E-MAIL: dbell@unf.edu