The Annals of Probability

Right Inverses of Nonsymmetric Lévy Processes

Matthias Winkel

Full-text: Open access


We analyze the existence and properties of right inverses $K$ for nonsymmetric Lévy processes $X$, extending recent work of Evans in the symmetric setting. First, both $X$ and $-X$ have right inverses if and only if $X$ is recurrent and has a nontrivial Gaussian component. Our main result is then a description of the excursion measure $n^Z$ of the strong Markov process $Z=X-L$ (reflected process) where $L_t=\inf\{x>0:K_x>t\}$. Specifically, $n^Z$ is essentially the restriction of $n^X$ to the ``excursions starting negative.'' Second, when only asking for right inverses of $X$, a certain ``strength of asymmetry'' is needed. Millar's notion of creeping turns out necessary but not sufficient for the existence of right inverses. We analyze this both in the bounded and unbounded variation case with a particular emphasis on results in terms of the Lévy–Khintchine characteristics.

Article information

Ann. Probab., Volume 30, Number 1 (2002), 382-415.

First available in Project Euclid: 29 April 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G51: Processes with independent increments; Lévy processes
Secondary: 60J25: Continuous-time Markov processes on general state spaces 60J45: Probabilistic potential theory [See also 31Cxx, 31D05]

Lévy processes subordinators excursions potential theory right inverses creeping


Winkel, Matthias. Right Inverses of Nonsymmetric Lévy Processes. Ann. Probab. 30 (2002), no. 1, 382--415. doi:10.1214/aop/1020107772.

Export citation


  • [1] BERG, C. and FORST, G. (1975). Potential Theory on Locally Compact Abelian Groups. Springer, Berlin.
  • [2] BERTOIN, J. (1996). Lévy Processes. Cambridge Univ. Press.
  • [3] BERTOIN, J. (1999). Subordinators: Examples and Applications. Ecole d'été de Probabilités de St. Flour XXVII. Lecture Notes in Math. 1717. Springer, Berlin.
  • [4] BLUMENTHAL, R. M. and GETOOR, R. K. (1961). Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10 493-516.
  • [5] BRETAGNOLLE, J. (1971). Résultats de Kesten sur les processus à accroissements indépendants. Séminaire de Probabilités V. Lecture Notes in Math. 21-36. Springer, Berlin.
  • [6] DELLACHERIE, C., MAISONNEUVE, B. and MEYER, P. A. (1992). Probabilités et potentiel 5, Chapters XVII-XXIV. Hermann, Paris.
  • [7] EVANS, S. (2000). Right inverses of Lévy processes and stationary stopped local times. Probab. Theory Related Fields 118 37-48.
  • [8] GETOOR, R. K. and SHARPE, M. J. (1981). Two results on dual excursions. In Seminar on Stochastic Processes (E. Çinlar, K. L. Chung and M. J. Sharpe, eds.) 31-52. Birkhäuser, Boston.
  • [9] MILLAR, P. W. (1973). Exit properties of stochastic processes with stationary independent increments. Trans. Amer. Math. Soc. 178 459-479.
  • [10] ROGERS, L. C. G. (1983). Itô excursion theory via resolvents.Wahrsch. Verw. Gebiete 63 237-255.
  • [11] ROGERS, L. C. G. and WILLIAMS, D. (1987). Diffusions, Markov Processes and Martingales 2: Itô Calculus. Wiley, New York.
  • [12] SATO, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press.
  • [13] SIMON, T. (1999). Subordination in the wide sense for Lévy processes. Probab. Theory Related Fields 115 445-477.
  • [14] VIGON, V. (2001). Votre Lévy rampe-t-il? Un critère pratique pour le savoir. J. London Math. Soc. To appear.