The Annals of Probability

On the High Temperature Phase of the Sherrington-Kirkpatrick Model

Michel Talagrand

Full-text: Open access


We prove the validity of the “replica-symmetric” solution of the Sherrington–Kirkpatrick model in a region that (probably) coincides with the region predicted by the physicists.

Article information

Ann. Probab., Volume 30, Number 1 (2002), 364-381.

First available in Project Euclid: 29 April 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 82D30: Random media, disordered materials (including liquid crystals and spin glasses)
Secondary: 82B44: Disordered systems (random Ising models, random Schrödinger operators, etc.)

Replica-symmetry spin glass


Talagrand, Michel. On the High Temperature Phase of the Sherrington-Kirkpatrick Model. Ann. Probab. 30 (2002), no. 1, 364--381. doi:10.1214/aop/1020107771.

Export citation


  • [1] GUERRA, F. (2000). Sum rules for the free energy of the spin glass model. Conference given at Les Houches, January 2000. To appear.
  • [2] LATALA, R. (2000). Private communication. August 2000.
  • [3] MÉZARD, M., PARISI, G. and VIRASORO, M. (1987). Spin Glass Theory and Beyond. World Scientific, Singapore.
  • [4] SCHCHERBINA, M. (1997). On the replica-symmetric solution for the SK model. Helvetica Phys. Acta. 70 848-853.
  • [5] TALAGRAND, M. (1998). The Sherrington-Kirkpatrick model: a challenge to mathematicians. Probab. Theory Related Fields 110 109-176.
  • [6] TALAGRAND, M. (2000). Exponential inequalities and replica-symmetry breaking for the Sherrington-Kirkpatrick model. Ann. Probab. 28 1018-1062.
  • [7] TALAGRAND, M. (2002). A First Course on Spin Glasses. École d'été de St. Flour 2000. Lecture Notes in Math. Springer, Berlin. To appear.
  • [8] TALAGRAND, M. (2001). Spin Glasses: a Challenge for Mathematicians. Book in preparation.