The Annals of Probability

Continuum-sites stepping-stone models, coalescing exchangeable partitions and random trees

Peter Donnelly, Steven N. Evans, Klaus Fleischmann, Thomas G. Kurtz, and Xiaowen Zhou

Full-text: Open access

Abstract

Analogues of stepping-stone models are considered where the sitespace is continuous, the migration process is a general Markov process, and the type-space is infinite. Such processes were defined in previous work of the second author by specifying a Feller transition semigroup in terms of expectations of suitable functionals for systems of coalescing Markov processes. An alternative representation is obtained here in terms of a limit of interacting particle systems. It is shown that, under a mild condition on the migration process, the continuum-sites stepping-stone process has continuous sample paths. The case when the migration process is Brownian motion on the circle is examined in detail using a duality relation between coalescing and annihilating Brownian motion. This duality relation is also used to show that a tree-like random compact metric space that is naturally associated to an in .nite family of coalescing Brownian motions on the circle has Hausdorff and packing dimension both almost surely equal to 1/2 and, moreover, this space is capacity equivalent to the middle-1/2 Cantor set (and hence also to the Brownian zero set).

Article information

Source
Ann. Probab., Volume 28, Number 3 (2000), 1063-1110.

Dates
First available in Project Euclid: 18 April 2002

Permanent link to this document
https://projecteuclid.org/euclid.aop/1019160326

Digital Object Identifier
doi:10.1214/aop/1019160326

Mathematical Reviews number (MathSciNet)
MR1797304

Zentralblatt MATH identifier
1023.60082

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60G57: Random measures 60J60: Diffusion processes [See also 58J65]

Keywords
Coalesce partition right process annihilate dual diffusion exchangeable particle system vector measure tree Hausdorff dimension packing dimension capacity equivalence fractal

Citation

Donnelly, Peter; Evans, Steven N.; Fleischmann, Klaus; Kurtz, Thomas G.; Zhou, Xiaowen. Continuum-sites stepping-stone models, coalescing exchangeable partitions and random trees. Ann. Probab. 28 (2000), no. 3, 1063--1110. doi:10.1214/aop/1019160326. https://projecteuclid.org/euclid.aop/1019160326


Export citation

References

  • [1] Asmussen S. and Kurtz, T. G. (1980). Necessary and sufficient conditions for complete convergence in the law of large numbers. Ann. Probab. 8 176-182.
  • [2] Aldous, D. J. (1985). Exchangeability and related topics. ´Ecole d'´et´e de probabilit´es de SaintFlour XIII. Lecture Notes in Math. 1117 1-198. Springer, Berlin.
  • [3] Aldous, D. (1993). The continuum random tree III. Ann. Probab. 21 248-289.
  • [4] Arratia R. A. (1979). Coalescing Brownian motions on the line. PhD dissertation, Univ. Wisconsin-Madison.
  • [5] Bramson, M., Cox, J. T. and Griffeath, D. (1986). Consolidation rates for two interacting systems in the plane. Probab. Theory Related Fields 73 613-625.
  • [6] Bertoin, J. (1996). L´evy Processes. Cambridge Univ. Press.
  • [7] Blumenthal, R. M. and Getoor, R. K. (1968). Markov Processes and Potential Theory. Academic Press, New York.
  • [8] Bramson, M. and Griffeath, D. (1980). Clustering and dispersion rates for some interacting particle systems on 1. Ann. Probab. 8 183-213.
  • [9] Benjamini, I. and Peres, Y. (1992). Random walks on a tree and capacity in the interval. Ann. Inst. H. Poincar´e Probab. Statist. 28 557-592.
  • [10] Biane, P., Pitman, J. and Yor, M. (1999). Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions. Preprint, Dept. Statistics, Univ. California, Berkeley. Available at http://www.stat.berkeley.edu/users/pitman.
  • [11] Dawson, D. A., Greven, A. and Vaillancourt, J. (1995). Equilibria and quasi-equilibria for infinite collections of interacting Fleming-Viot processes. Trans. Amer. Math. Soc. 347 2277-2360.
  • [12] Donnelly, P. and Kurtz, T. G. (1996). A countable representation of the Fleming-Viot measure-valued diffusion. Ann. Probab. 24 698-742.
  • [13] Dellacherie, C. and Meyer, P.-A. (1978). Probabilities and Potential. North-Holland, Amsterdam.
  • [14] Dunford, N. and Schwartz, J. T. (1958). Linear Operators, Part I: General Theory. Interscience. New York.
  • [15] Diestel, J and Uhl, J. J., Jr. (1977). Vector Measures. Amer. Math. Soc., Providence, RI.
  • [16] Evans, S. N. and Fleischmann, K. (1996). Cluster formation in a stepping stone model with continuous, hierarchically structured sites. Ann. Probab. 24 1926-1952.
  • [17] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York.
  • [18] Evans, S. N. and Peres, Y. (1998). Eventual intersection of sequences of L´evy processes. Elect. Comm. Probab. 3 21-27.
  • [19] Evans, S. N. (1997). Coalescing Markov labelled partitions and a continuous sites genetics model withinfinitely many types. Ann. Inst. H. Poincar´e Probab. Statist. 33 339-358.
  • [20] Evans, S. N. (1998). Kingman's coalescent as a random metric space. In Stochastic Models: A Conference in Honour of Professor Donald A. Dawson (L. G. Gorostiza and B. G. Ivanoff, eds). Canad. Math. Soc. and Amer. Math. Soc., Providence, RI. To appear. Preprint available at http://www.stat.berkeley.edu/users/evans.
  • [21] Fleischmann, K. and Greven, A. (1994). Diffusive clustering in an infinite system of hierarchically interacting diffusions. Probab. Theory Related Fields 98 517-566.
  • [22] Fleischmann, K. and Greven, A. (1996). Time-space analysis of the cluster-formation in interacting diffusions. Electron. J. Probab. 1.
  • [23] Freedman, D. (1983). Brownian Motion and Diffusion. Springer, New York.
  • [24] Getoor, R. K. (1984). Capacity theory and weak duality. In Seminar on Stochastic Processes 97-130. Birkh¨auser, Boston.
  • [25] Getoor, R. K. and Sharpe, M. J. (1984). Naturality, standardness, and weak duality for Markov processes.Wahrsch. Verw. Gebiete 67 1-62.
  • [26] Handa, K. (1990). A measure-valued diffusion process describing the stepping stone model withinfinitely many alleles. Stochastic Process. Appl. 36 269-296.
  • [27] Klenke, A. (1996). Different clustering regimes in systems of hierarchically interacting diffusions. Ann. Probab 24 660-697.
  • [28] Knight, F. B. (1981). Essentials of Brownian Motion and Diffusion. Amer. Math. Soc., Providence, RI.
  • [29] Mattila, P. (1995). Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge Univ. Press.
  • [30] M ¨uller, C. and Tribe, R. (1995). Stochastic p.d.e.'s arising from the long range contact and long range voter processes. Probab. Theory Related Fields 102 519-545.
  • [31] Peres, Y. (1996). Remarks on intersection-equivalence and capacity-equivalence. Ann. Inst. H. Poincar´e Phys. Th´eor. 64 339-347.
  • [32] Pemantle, R. and Peres, Y. (1995). Galton-Watson trees with the same mean have the same polar sets. Ann. Probab. 23 1102-1124.
  • [33] Pemantle, R., Peres, Y. and Shapiro, J. W. (1996). The trace of spatial Brownian motion is capacity-equivalent to the unit square. Probab. Theory Related Fields 106 379-399.
  • [34] Royden, H. L. (1968). Real Analysis, 2nd ed. Collier MacMillan, New York.
  • [35] Schwartz, D. (1978). On hitting probabilities for an annihilating particle model. Ann. Probab. 6 398-403.
  • [36] Schikhof, W. H. (1984). Ultrametric Calculus: An Introduction to p-adic Analysis. Cambridge Univ. Press
  • [37] Sharpe, M. (1988). General Theory of Markov Processes. Academic Press, Boston.
  • [38] Shiga, T. (1980). An interacting system in population genetics. J. Math. Kyoto Univ. 20 213-242.
  • [39] Tribe, R. (1995). Large time behavior of interface solutions to the heat equation with FisherWright white noise. Probab. Theory Related Fields 102 289-311.
  • [40] Tsirelson, B. (1998). Brownian coalescence as a black noise I. Preprint, School of Mathematics, Tel Aviv Univ.
  • [41] T ´oth, B. and Werner, W. (1998). The true self-repelling motion. Probab. Theory Related Fields 111 375-452.