The Annals of Probability

Finite time extinction of superprocesses with catalysts

Donald A. Dawson, Klaus Fleischmann, and Carl Mueller

Full-text: Open access


Consider a catalytic super-Brownian motion $X =X^\Gamma$ with finite variance branching. Here “catalytic ” means that branching of the reactant $X$ is only possible in the presence of some catalyst. Our intrinsic example of a catalyst is a stable random measure $\Gamma$ on $\mathsf{R}$ of index $0 <\gamma<1$. Consequently, here the catalyst is located in a countable dense subset of $\mathsf{R}$. Starting with a finite reactant mass $X_0$ supported by a compact set, $X$ is shown to die in finite time.We also deal with two other cases, with a power low catalyst and with a super-random walk on $\mathsf{Z^d}$ withan i.i.d.catalyst.

Our probabilistic argument uses the idea of good and bad historical paths of reactant “particles ”during time periods $[T_n, T_{n +1}$. Good paths have a signi .cant collision local time with the catalyst, and extinction can be shown by individual time change according to the collision local time and a comparison with Feller’s branching diffusion. On the other hand, the remaining bad paths are shown to have a small expected mass at time $T_{n +1}$ which can be controlled by the hitting probability of point catalysts and the collision local time spent on them.

Article information

Ann. Probab., Volume 28, Number 2 (2000), 603-642.

First available in Project Euclid: 18 April 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)
Secondary: 60J55: Local time and additive functionals 60G57: Random measures

Catalytic super-Brownian motion historical superprocess critical branching finite time extinction finite time survival measure-valued branching random medium good and bad paths stopped measures collision local time comparison stopped historical superprocess branching rate functional super-random walk interacting Feller’s branching diffusion stable catalyst.


Dawson, Donald A.; Fleischmann, Klaus; Mueller, Carl. Finite time extinction of superprocesses with catalysts. Ann. Probab. 28 (2000), no. 2, 603--642. doi:10.1214/aop/1019160254.

Export citation


  • [1] Barlow, M. T., Evans, S. N. and Perkins, E. A. (1991). Collision local times and measurevalued processes. Canad. J. Math. 43 897-938.
  • [2] Billingsley, P. (1986). Probability and Measure, 2nd ed. Wiley, New York.
  • [3] Dawson, D. A. and Fleischmann, K. (1991). Critical branching in a highly fluctuating random medium. Probab. Theory Related Fields 90 241-274.
  • [4] Dawson, D. A. and Fleischmann, K. (1992). Diffusion and reaction caused by point catalysts. SIAM J. Appl. Math. 52 163-180.
  • [5] Dawson, D. A. and Fleischmann, K. (1997). A continuous super-Brownian motion in a super-Brownian medium. J. Theoret. Probab. 10 213-276.
  • [6] Dawson, D. A. and Fleischmann, K. (1999). Catalytic and mutually catalytic branching. Preprint 510. WIAS Berlin.
  • [7] Dawson, D. A., Fleischmann, K. and Leduc, G. (1998). Continuous dependence of a class of superprocesses on branching parameters and applications. Ann. Probab. 26 262-601.
  • [8] Dawson, D. A., Fleischmann, K. and Roelly, S. (1991). Absolute continuity for the measure states in a branching model with catalysts. Prog. Probab. 24 117-160.
  • [9] Dawson, D. A., Li, Y. and Mueller, C. (1995). The support of measure-valued branching processes in a random environment. Ann. Probab. 23 1692-1718.
  • [10] Dawson, D. A. and Perkins, E. A. (1991). Historical processes. Mem. Amer. Math. Soc. 93 iv + 179.
  • [11] Donsker, M. D. and Varadhan, S. R. S. (1975). Asymptotic evaluation of certain Wiener integrals for large time. In Functional Integration and its Applications. Proceedings of the International Congress (A. M. Arthurs, ed.) 15-33. Clarendon Press, Oxford.
  • [12] Donsker, M. D. and Varadhan, S. R. (1977). On laws of the iterated logarithm for local times. Comm. Pure Appl. Math. 30 707-753.
  • [13] Dym, H. and McKean, H. P. (1972). Fourier Series and Integrals. Academic Press, New York.
  • [14] Dynkin, E. B. (1991). Branching particle systems and superprocesses. Ann. Probab. 19 1157-1194.
  • [15] Dynkin, E. B. (1991). Pathprocesses and historical superprocesses. Probab. Theory Related Fields 90 1-36.
  • [16] Engl¨ander, J. and Fleischmann, K. (2000). Extinction properties of super-Brownian motions withadditional spatially dependent mass production. Stoch. Process. Appl. 88 37-58.
  • [17] Fleischmann, K. and Klenke, A. (1999). Smoothdensity field of catalytic super-Brownian motion. Ann. Appl. Probab. 9 298-318.
  • [18] Fleischmann, K. and Klenke, A. (2000). The biodiversity of catalytic super-Brownian motion. Ann. Appl. Probab. To appear.
  • [19] Fleischmann, K. and Le Gall, J.-F. (1995). A new approachto the single point catalytic super-Brownian motion. Probab. Theory Related Fields 102 63-82.
  • [20] Fleischmann, K. and Mueller, C. (1997). A super-Brownian motion witha locally infinite catalytic mass. Probab. Theory Related Fields 107 325-357.
  • [21] Fleischmann, K. and Mueller, C. (2000). Finite time extinction of catalytic branching processes. In Stochastic Models. A Conference in Honour of Donald A. Dawson (L. G. Gorostiza and B. G. Ivanoff, eds.) 125-139. Amer. Math. Soc., Providence, RI.
  • [22] Fristedt, B. E. (1967). Sample function behavior of increasing processes with stationary, independent increments. Pacific J. Math. 21 21-33.
  • [23] Galambos, J. (1978). The Asymptotic Theory of Extreme Order Statistics. Wiley, New York.
  • [24] Glitzky, A., Gr ¨oger, K. and H ¨unlich, R. (1996). Free energy and dissipation rate for reaction diffusion processes of electrically charged species. Appl. Anal. 60 201-217.
  • [25] Klenke, A. (2000). A review on spatial catalytic branching. In Stochastic Models. A Conference in Honour of Donald A. Dawson (L. G. Gorostiza and B. G. Ivanoff, eds.) 245-263. Amer. Math. Soc., Providence, RI.
  • [26] Konno, N. and Shiga, T. (1988). Stochastic partial differential equations for some measurevalued diffusions. Probab. Theory Related Fields 79 201-225.
  • [27] Ortoleva, P. and Ross, J. (1972). Local structures in chemical reactions with heterogeneous catalysis. J. Chemical Phys. 56 4397-4400.
  • [28] Pagliaro, L. and Taylor, D. L. (1988). Aldolase exists in both the fluid and solid phases of cytoplasm. J. Cell Biology 107 981-999.
  • [29] Perkins, E. A. (1995). On the martingale problem for interactive measure-valued branching diffusions. Mem. Amer. Math. Soc. 549.
  • [30] Revuz, D. and Yon, M. (1991). Continuous Martingales and Brownian Motion. Springer, Berlin.
  • [31] Shiga, T. and Shimizu, A. (1980). Infinite-dimensional stochastic differential equations and their applications. J. Math. Kyoto Univ. 20 395-416.