Annals of Probability

Isoperimetry for Gibbs Measures

Bogusław Zegarlinski

Full-text: Open access

Abstract

We show that a strong mixing condition implies a Bakry-Bobkov-Ledoux inequality for a probability measure on infinite-dimensional space.

Article information

Source
Ann. Probab., Volume 29, Number 2 (2001), 802-819.

Dates
First available in Project Euclid: 21 December 2001

Permanent link to this document
https://projecteuclid.org/euclid.aop/1008956693

Digital Object Identifier
doi:10.1214/aop/1008956693

Mathematical Reviews number (MathSciNet)
MR1849178

Zentralblatt MATH identifier
1027.60099

Subjects
Primary: 28C 35R45.

Keywords
Isoperimetry functional inequalities probability measures on infinite dimensional spaces

Citation

Zegarlinski, Bogusław. Isoperimetry for Gibbs Measures. Ann. Probab. 29 (2001), no. 2, 802--819. doi:10.1214/aop/1008956693. https://projecteuclid.org/euclid.aop/1008956693


Export citation