The Annals of Probability

Critical large deviations in harmonic crystals with long-range interactions

P. Caputo and J.-D. Deuschel

Full-text: Open access

Abstract

We continue our study of large deviations of the empirical measures of a massless Gaussian field on $Z^d$, whose covariance is given by the Green function of a long-range random walk. In this paper we extend techniques and results of Bolthausen and Deuschel to the nonlocal case of a random walk in the domain of attraction of the symmetric $\alpha$-stable law, with $\alpha \in (0, 2 \wedge d)$. In particular, we show that critical large deviations occur at the capacity scale $N^{d-\alpha}$, with a rate function given by the Dirichlet form of the embedded $\alpha$-stable process. We also prove that if we impose zero boundary conditions, the rate function is given by the Dirichlet form of the killed $\alpha$- stable process.

Article information

Source
Ann. Probab., Volume 29, Number 1 (2001), 242-287.

Dates
First available in Project Euclid: 21 December 2001

Permanent link to this document
https://projecteuclid.org/euclid.aop/1008956329

Digital Object Identifier
doi:10.1214/aop/1008956329

Mathematical Reviews number (MathSciNet)
MR1825149

Zentralblatt MATH identifier
1021.60022

Subjects
Primary: 60G15: Gaussian processes 60G52: Stable processes 60F10: Large deviations 31C25: Dirichlet spaces 82B41: Random walks, random surfaces, lattice animals, etc. [See also 60G50, 82C41]

Keywords
Random walks Gaussian random fields Gibbs measures large deviations symmetric stable processes Dirichlet forms

Citation

Caputo, P.; Deuschel, J.-D. Critical large deviations in harmonic crystals with long-range interactions. Ann. Probab. 29 (2001), no. 1, 242--287. doi:10.1214/aop/1008956329. https://projecteuclid.org/euclid.aop/1008956329


Export citation

References

  • [1] Abramowitz, M. and Stegun, I. (1984). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Wiley, New York.
  • [2] Blumenthal, G. (1960). Theorems on the stable process. Trans. American Math. Soc. 95 263-273.
  • [3] Bodineau, T., Ioffe, D. and Velenik, Y. (2000). Rigorous probabilistic analysis of equilibrium crystal shapes. J. Math. Phys. 41 1033-1098.
  • [4] Bolthausen, E. and Deuschel, J.-D. (1993). Critical large deviations for Gaussian fields in the phase transition regime. Ann. Probab. 21 1876-1920.
  • [5] Bolthausen, E., Deuschel, J.-D. and Zeitouni, O. (1995). Entropic repulsion of the lattice free field. Comm. Math. Phys. 170 417-443.
  • [6] Caputo, P. (2000). Harmonic crystals: statistical mechanics and large deviations. Ph.D. thesis, TU-Berlin. Available at edocs.tu-berlin.de/diss/index.html.
  • [7] Caputo, P. and Deuschel, J.-D. (2000). Large deviations and variational principle for harmonic crystals. Comm. Math. Phys. 209 595-632.
  • [8] Cerf, R. and Pistzora, A. (1999). On the Wulff crystal in the Ising model. Preprint.
  • [9] Chen,-Q. and Song, R. (1997). Intrinsic ultracontractivity and conditional gauge for symmetric stable processes. J. Func. Anal. 150 204-239.
  • [10] Dembo, A. and Zeitouni, O. (1993). Large Deviations. Jones and Bartlett, Boston.
  • [11] Deuschel, J.-D. and Stroock, D. W. (1989). Large Deviations. Academic Press, Boston.
  • [12] Dieudonn´e, J. (1980). Calcul Infinit´esimal. Hermann, Paris.
  • [13] Feller, W. (1971). An Introduction to Probability Theory and Its Applications, 2. Wiley, New York.
  • [14] Fukushima, M., Oshima, Y. and Takeda, M. (1994). Dirichlet Forms and Symmetric Markov Processes. de Gruyter, Berlin.
  • [15] Landkof, N. S. (1970). Foundations of Modern Potential Theory. Springer, Berlin.
  • [16] Lawler, G. (2000). A note on the Green's function for random walk in four dimensions. Unpublished notes.
  • [17] Le Gall, J. F. (1986). Properties of intersection of random walks I. Convergence to local time intersection. Comm. Math. Phys. 104 471-507.
  • [18] Le Gall, J. F. and Rosen, J. (1991). The range of stable random walks. Ann. Probab. 19 650-705.
  • [19] LeJan, Y. (1987). Balayage et formes de Dirichlet.Wahrsch. Verw. Gebiete 37 297-319.
  • [20] Silverstein, M. L. (1974). Symmetric Markov processes. Lecture Notes in Math. 426. Springer, Berlin.
  • [21] Skorokhod, A. V. (1957). Limit theorems for stochastic processes with independent increments. Theory Probab. Appl. 2 138-171.
  • [22] Spitzer, F. (1974). Introduction aux processus de Markov a param etre dans d. Lecture Notes in Math. 390. Springer, Berlin.
  • [23] Spitzer, F. (1976). Principles of Random Walks. Springer, Berlin.
  • [24] Stein, E. M. Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press.
  • [25] Stroock, D. W. (1993). Probability Theory: An Analytic View. Cambridge Univ. Press.
  • [26] Williamson, J. A. (1968). Random walks and Riesz kernels. Pacific J. Math. 25 393-415.