## The Annals of Mathematical Statistics

- Ann. Math. Statist.
- Volume 24, Number 1 (1953), 23-43.

### The Power of Rank Tests

#### Abstract

Simple nonparametric classes of alternatives are defined for various nonparametric hypotheses. The power of a number of such tests against these alternatives is obtained and illustrated with some numerical results. Optimum rank tests against certain types of alternatives are derived, and optimum properties of Wilcoxon's one- and two-sample tests and of the rank correlation test for independence are proved.

#### Article information

**Source**

Ann. Math. Statist., Volume 24, Number 1 (1953), 23-43.

**Dates**

First available in Project Euclid: 28 April 2007

**Permanent link to this document**

https://projecteuclid.org/euclid.aoms/1177729080

**Digital Object Identifier**

doi:10.1214/aoms/1177729080

**Mathematical Reviews number (MathSciNet)**

MR54208

**Zentralblatt MATH identifier**

0050.14702

**JSTOR**

links.jstor.org

#### Citation

Lehmann, E. L. The Power of Rank Tests. Ann. Math. Statist. 24 (1953), no. 1, 23--43. doi:10.1214/aoms/1177729080. https://projecteuclid.org/euclid.aoms/1177729080