## The Annals of Mathematical Statistics

- Ann. Math. Statist.
- Volume 25, Number 2 (1954), 382-386.

### Approximation Methods which Converge with Probability one

#### Abstract

Let $H(y\mid x)$ be a family of distribution functions depending upon a real parameter $x,$ and let $M(x) = \int^\infty_{-\infty} y dH(y \mid x)$ be the corresponding regression function. It is assumed $M(x)$ is unknown to the experimenter, who is, however, allowed to take observations on $H(y\mid x)$ for any value $x.$ Robbins and Monro [1] give a method for defining successively a sequence $\{x_n\}$ such that $x_n$ converges to $\theta$ in probability, where $\theta$ is a root of the equation $M(x) = \alpha$ and $\alpha$ is a given number. Wolfowitz [2] generalizes these results, and Kiefer and Wolfowitz [3], solve a similar problem in the case when $M(x)$ has a maximum at $x = \theta.$ Using a lemma due to Loeve [4], we show that in both cases $x_n$ converges to $\theta$ with probability one, under weaker conditions than those imposed in [2] and [3]. Further we solve a similar problem in the case when $M(x)$ is the median of $H(y \mid x).$

#### Article information

**Source**

Ann. Math. Statist., Volume 25, Number 2 (1954), 382-386.

**Dates**

First available in Project Euclid: 28 April 2007

**Permanent link to this document**

https://projecteuclid.org/euclid.aoms/1177728794

**Digital Object Identifier**

doi:10.1214/aoms/1177728794

**Mathematical Reviews number (MathSciNet)**

MR62399

**Zentralblatt MATH identifier**

0055.37806

**JSTOR**

links.jstor.org

#### Citation

Blum, Julius R. Approximation Methods which Converge with Probability one. Ann. Math. Statist. 25 (1954), no. 2, 382--386. doi:10.1214/aoms/1177728794. https://projecteuclid.org/euclid.aoms/1177728794