## The Annals of Mathematical Statistics

- Ann. Math. Statist.
- Volume 27, Number 2 (1956), 507-512.

### Approximate Upper Percentage Points for Extreme Values in Multinomial Sampling

#### Abstract

Given a $k$-fold multinomial distribution with equal probability for each category, the probability of the largest frequency in any category is desired. A simple asymptotic approximation to the upper percentage points of this distribution is obtained. A table of .95 and .99 points of the approximation for $k = 1(1)25$, and a table comparing these with actual values for $k = 3, 4, 5$ and $n = 3(1)12$, are provided. An investigation of the moment problem is given.

#### Article information

**Source**

Ann. Math. Statist., Volume 27, Number 2 (1956), 507-512.

**Dates**

First available in Project Euclid: 28 April 2007

**Permanent link to this document**

https://projecteuclid.org/euclid.aoms/1177728273

**Digital Object Identifier**

doi:10.1214/aoms/1177728273

**Mathematical Reviews number (MathSciNet)**

MR78626

**Zentralblatt MATH identifier**

0071.13404

**JSTOR**

links.jstor.org

#### Citation

Kozelka, Robert M. Approximate Upper Percentage Points for Extreme Values in Multinomial Sampling. Ann. Math. Statist. 27 (1956), no. 2, 507--512. doi:10.1214/aoms/1177728273. https://projecteuclid.org/euclid.aoms/1177728273