## The Annals of Mathematical Statistics

- Ann. Math. Statist.
- Volume 31, Number 2 (1960), 492-497.

### On the Uniqueness of the Triangular Association Scheme

#### Abstract

Connor [3] has shown that the relations among the parameters of the triangular association scheme themselves imply the scheme if $n \geqq 9$. This result was shown by Shrikhande [6] to hold also if $n \leqq 6$. (The problem has no meaning for $n < 4$.) This paper shows that the result holds if $n = 7$, but that it is false if $n = 8$.

#### Article information

**Source**

Ann. Math. Statist., Volume 31, Number 2 (1960), 492-497.

**Dates**

First available in Project Euclid: 27 April 2007

**Permanent link to this document**

https://projecteuclid.org/euclid.aoms/1177705914

**Digital Object Identifier**

doi:10.1214/aoms/1177705914

**Mathematical Reviews number (MathSciNet)**

MR117166

**Zentralblatt MATH identifier**

0091.31504

**JSTOR**

links.jstor.org

#### Citation

Hoffman, A. J. On the Uniqueness of the Triangular Association Scheme. Ann. Math. Statist. 31 (1960), no. 2, 492--497. doi:10.1214/aoms/1177705914. https://projecteuclid.org/euclid.aoms/1177705914

#### See also

- Same Results Obtained: Note [On the Uniqueness and Nonuniqueness of the Triangular Association Schemes]. Ann. Math. Statist., Volume 31, Issue 2, June 1960, 497.