## The Annals of Mathematical Statistics

- Ann. Math. Statist.
- Volume 32, Number 2 (1961), 524-534.

### The Gap Test for Random Sequences

Eve Bofinger and V. J. Bofinger

#### Abstract

This paper is concerned with the gap test for random sequences, first proposed by Kendall and Babington-Smith [7], and with various extensions to this test. One of these extensions is the test proposed by Meyer, Gephart and Rasmussen [8], another is, asymptotically, a partitioning of the $\chi^2$ statistic of Kendall and Babington-Smith [7], and others are likelihood ratio tests based on Markov chain models.

#### Article information

**Source**

Ann. Math. Statist., Volume 32, Number 2 (1961), 524-534.

**Dates**

First available in Project Euclid: 27 April 2007

**Permanent link to this document**

https://projecteuclid.org/euclid.aoms/1177705058

**Digital Object Identifier**

doi:10.1214/aoms/1177705058

**Mathematical Reviews number (MathSciNet)**

MR126909

**Zentralblatt MATH identifier**

0109.37302

**JSTOR**

links.jstor.org

#### Citation

Bofinger, Eve; Bofinger, V. J. The Gap Test for Random Sequences. Ann. Math. Statist. 32 (1961), no. 2, 524--534. doi:10.1214/aoms/1177705058. https://projecteuclid.org/euclid.aoms/1177705058