Annals of Mathematical Statistics

Limit Theorems for Randomly Selected Partial Sums

Patrick Billingsley

Full-text: Open access


Let $\{S_n\}$ be the partial sums of a sequence (not necessarily independent) of random variables $\{X_n\}$, and let $\{m_u\}$ be a set of integer-valued random variables depending on an index $u \geqq 0$. Suppose that $m_u/u$ converges in probability to a constant as $u \rightarrow \infty$ and that $S_n$ obeys the central limit theorem (when it is normed properly, as must also be the other variables below). Anscombe [1] has shown that if the $S_n$ do not fluctuate too much, in a sense made precise below, then the random sum $S_{m_u}$ also obeys the central limit theorem. Anscombe's condition is closely related to one introduced by Prohorov [6] in connection with the Erdos-Kac-Donsker invariance principle. In Section 2 this relationship is investigated; in particular, it is shown that if the sequence $\{X_n\}$ satisfies the invariance principle then $S_{m_u}$ is asymptotically normal. The invariance principle has been proved in [2] for various dependent sequences $\{X_n\}$, to each of which this result is then applicable. In Section 3 an invariance principle is formulated and proved for the random partial sums; this result enables one to find, for example, the limiting distribution of $\max_{k \leqq m_u} S_k$. In Section 4, these theorems are applied to renewal processes.

Article information

Ann. Math. Statist., Volume 33, Number 1 (1962), 85-92.

First available in Project Euclid: 27 April 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier



Billingsley, Patrick. Limit Theorems for Randomly Selected Partial Sums. Ann. Math. Statist. 33 (1962), no. 1, 85--92. doi:10.1214/aoms/1177704713.

Export citation