Open Access
December 2020 Mixture of hidden Markov models for accelerometer data
Marie Du Roy de Chaumaray, Matthieu Marbac, Fabien Navarro
Ann. Appl. Stat. 14(4): 1834-1855 (December 2020). DOI: 10.1214/20-AOAS1375
Abstract

Motivated by the analysis of accelerometer data taken across a population of individuals, we introduce a specific finite mixture of hidden Markov models with particular characteristics that adapt well to the specific nature of this type of longitudinal data. Our model allows for the computation of statistics that characterize the physical activity of a subject (e.g., the mean time spent at different activity levels and the probability of the transition between two activity levels) without specifying the activity levels in advance but by estimating them from the data. In addition, this approach allows the heterogeneity of the population to be taken into account and subpopulations with homogeneous physical activity behavior to be defined. We prove that, under mild assumptions, this model implies that the probability of misclassifying a subject decreases at an exponential decay with the length of its measurement sequence. Model identifiability is also investigated. We also report a comprehensive suite of numerical simulations to support our theoretical findings. The method is motivated by and applied to the Physical Activity and Transit Survey.

References

1.

Aarts, E. (2019). mHMMbayes: Multilevel hidden Markov models using Bayesian estimation. R package version 0.1.1.Aarts, E. (2019). mHMMbayes: Multilevel hidden Markov models using Bayesian estimation. R package version 0.1.1.

2.

Allman, E. S., Matias, C. and Rhodes, J. A. (2009). Identifiability of parameters in latent structure models with many observed variables. Ann. Statist. 37 3099–3132. 1191.62003 10.1214/09-AOS689 euclid.aos/1250515381Allman, E. S., Matias, C. and Rhodes, J. A. (2009). Identifiability of parameters in latent structure models with many observed variables. Ann. Statist. 37 3099–3132. 1191.62003 10.1214/09-AOS689 euclid.aos/1250515381

3.

Altman, R. M. (2007). Mixed hidden Markov models: An extension of the hidden Markov model to the longitudinal data setting. J. Amer. Statist. Assoc. 102 201–210. 1284.62803 10.1198/016214506000001086Altman, R. M. (2007). Mixed hidden Markov models: An extension of the hidden Markov model to the longitudinal data setting. J. Amer. Statist. Assoc. 102 201–210. 1284.62803 10.1198/016214506000001086

4.

Bai, J., Sun, Y., Schrack, J. A., Crainiceanu, C. M. and Wang, M.-C. (2018). A two-stage model for wearable device data. Biometrics 74 744–752. 1414.62430 10.1111/biom.12781Bai, J., Sun, Y., Schrack, J. A., Crainiceanu, C. M. and Wang, M.-C. (2018). A two-stage model for wearable device data. Biometrics 74 744–752. 1414.62430 10.1111/biom.12781

5.

Banfield, J. D. and Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics 49 803–821. 0794.62034 10.2307/2532201Banfield, J. D. and Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics 49 803–821. 0794.62034 10.2307/2532201

6.

Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013). Latent Markov Models for Longitudinal Data. Statistics in the Social and Behavioral Sciences Series. CRC Press, Boca Raton, FL. 1341.62002Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013). Latent Markov Models for Longitudinal Data. Statistics in the Social and Behavioral Sciences Series. CRC Press, Boca Raton, FL. 1341.62002

7.

Bartolucci, F., Pandolfi, S. and Pennoni, F. (2017). Lmest: An R package for latent Markov models for longitudinal categorical data. J. Stat. Softw. 81 1–38.Bartolucci, F., Pandolfi, S. and Pennoni, F. (2017). Lmest: An R package for latent Markov models for longitudinal categorical data. J. Stat. Softw. 81 1–38.

8.

Bartolucci, F., Pennoni, F. and Vittadini, G. (2011). Assessment of school performance through a multilevel latent Markov rasch model. J. Educ. Behav. Stat. 36 491–522.Bartolucci, F., Pennoni, F. and Vittadini, G. (2011). Assessment of school performance through a multilevel latent Markov rasch model. J. Educ. Behav. Stat. 36 491–522.

9.

Biernacki, C., Celeux, G. and Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22 719–725.Biernacki, C., Celeux, G. and Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22 719–725.

10.

Brault, V. and Mariadassou, M. (2015). Co-clustering through latent bloc model: A review. J. SFdS 156 120–139. 1341.62172Brault, V. and Mariadassou, M. (2015). Co-clustering through latent bloc model: A review. J. SFdS 156 120–139. 1341.62172

11.

Cappé, O., Moulines, E. and Rydén, T. (2005). Inference in Hidden Markov Models. Springer Series in Statistics. Springer, New York. With Randal Douc’s contributions to Chapter 9 and Christian P. Robert’s to Chapters 6, 7 and 13, With Chapter 14 by Gersende Fort, Philippe Soulier and Moulines, and Chapter 15 by Stéphane Boucheron and Elisabeth Gassiat.Cappé, O., Moulines, E. and Rydén, T. (2005). Inference in Hidden Markov Models. Springer Series in Statistics. Springer, New York. With Randal Douc’s contributions to Chapter 9 and Christian P. Robert’s to Chapters 6, 7 and 13, With Chapter 14 by Gersende Fort, Philippe Soulier and Moulines, and Chapter 15 by Stéphane Boucheron and Elisabeth Gassiat.

12.

Celeux, G. and Durand, J.-B. (2008). Selecting hidden Markov model state number with cross-validated likelihood. Comput. Statist. 23 541–564. 1224.62039 10.1007/s00180-007-0097-1Celeux, G. and Durand, J.-B. (2008). Selecting hidden Markov model state number with cross-validated likelihood. Comput. Statist. 23 541–564. 1224.62039 10.1007/s00180-007-0097-1

13.

Celisse, A., Daudin, J.-J. and Pierre, L. (2012). Consistency of maximum-likelihood and variational estimators in the stochastic block model. Electron. J. Stat. 6 1847–1899. 1295.62028 10.1214/12-EJS729Celisse, A., Daudin, J.-J. and Pierre, L. (2012). Consistency of maximum-likelihood and variational estimators in the stochastic block model. Electron. J. Stat. 6 1847–1899. 1295.62028 10.1214/12-EJS729

14.

Cole, R. J., Kripke, D. F., Gruen, W., Mullaney, D. J. and Gillin, J. C. (1992). Automatic sleep/wake identification from wrist activity. Sleep 15 461–469.Cole, R. J., Kripke, D. F., Gruen, W., Mullaney, D. J. and Gillin, J. C. (1992). Automatic sleep/wake identification from wrist activity. Sleep 15 461–469.

15.

Csiszár, I. and Talata, Z. (2006). Consistent estimation of the basic neighborhood of Markov random fields. Ann. Statist. 34 123–145. 1102.62105 10.1214/009053605000000912 euclid.aos/1146576258Csiszár, I. and Talata, Z. (2006). Consistent estimation of the basic neighborhood of Markov random fields. Ann. Statist. 34 123–145. 1102.62105 10.1214/009053605000000912 euclid.aos/1146576258

16.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 1–38. 0364.62022 10.1111/j.2517-6161.1977.tb01600.xDempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 1–38. 0364.62022 10.1111/j.2517-6161.1977.tb01600.x

17.

Du Roy de Chaumaray, M., Marbac, M. and Navarro, F. (2020b). Supplement to “Mixture of hidden Markov models for accelerometer data.”  https://doi.org/10.1214/20-AOAS1375SUPPDu Roy de Chaumaray, M., Marbac, M. and Navarro, F. (2020b). Supplement to “Mixture of hidden Markov models for accelerometer data.”  https://doi.org/10.1214/20-AOAS1375SUPP

18.

Du Roy de Chaumaray, M., Marbac, M. and Navarro, F. (2020a). MHMM: Finite mixture of hidden Markov model. R package version 1.0.0.Du Roy de Chaumaray, M., Marbac, M. and Navarro, F. (2020a). MHMM: Finite mixture of hidden Markov model. R package version 1.0.0.

19.

Dyrstad, S. M., Hansen, B. H., Holme, I. M. and Anderssen, S. A. (2014). Comparison of self-reported versus accelerometer-measured physical activity. Med. Sci. Sports Exerc. 46 99–106.Dyrstad, S. M., Hansen, B. H., Holme, I. M. and Anderssen, S. A. (2014). Comparison of self-reported versus accelerometer-measured physical activity. Med. Sci. Sports Exerc. 46 99–106.

20.

Freedson, P. S., Melanson, E. and Sirard, J. (1998). Calibration of the computer science and applications. Inc. Accelerometer. Med. Sci. Sports Exerc. 30 777–781.Freedson, P. S., Melanson, E. and Sirard, J. (1998). Calibration of the computer science and applications. Inc. Accelerometer. Med. Sci. Sports Exerc. 30 777–781.

21.

Gassiat, E. (2002). Likelihood ratio inequalities with applications to various mixtures. Ann. Henri Poincaré (B) 38 897–906. 1011.62025 10.1016/S0246-0203(02)01125-1Gassiat, E. (2002). Likelihood ratio inequalities with applications to various mixtures. Ann. Henri Poincaré (B) 38 897–906. 1011.62025 10.1016/S0246-0203(02)01125-1

22.

Gassiat, E., Cleynen, A. and Robin, S. (2016). Inference in finite state space non parametric hidden Markov models and applications. Stat. Comput. 26 61–71. 1342.62141 10.1007/s11222-014-9523-8Gassiat, E., Cleynen, A. and Robin, S. (2016). Inference in finite state space non parametric hidden Markov models and applications. Stat. Comput. 26 61–71. 1342.62141 10.1007/s11222-014-9523-8

23.

Geraci, M. (2019). Additive quantile regression for clustered data with an application to children’s physical activity. J. R. Stat. Soc. Ser. C. Appl. Stat. 68 1071–1089.Geraci, M. (2019). Additive quantile regression for clustered data with an application to children’s physical activity. J. R. Stat. Soc. Ser. C. Appl. Stat. 68 1071–1089.

24.

Geraci, M. and Farcomeni, A. (2016). Probabilistic principal component analysis to identify profiles of physical activity behaviours in the presence of non-ignorable missing data. J. R. Stat. Soc. Ser. C. Appl. Stat. 65 51–75.Geraci, M. and Farcomeni, A. (2016). Probabilistic principal component analysis to identify profiles of physical activity behaviours in the presence of non-ignorable missing data. J. R. Stat. Soc. Ser. C. Appl. Stat. 65 51–75.

25.

Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika 61 215–231. 0281.62057 10.1093/biomet/61.2.215Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika 61 215–231. 0281.62057 10.1093/biomet/61.2.215

26.

Grandner, M. A., Sands-Lincoln, M. R., Pak, V. M. and Garland, S. N. (2013). Sleep duration, cardiovascular disease, and proinflammatory biomarkers. Nat. Sci. Sleep 5 93–107.Grandner, M. A., Sands-Lincoln, M. R., Pak, V. M. and Garland, S. N. (2013). Sleep duration, cardiovascular disease, and proinflammatory biomarkers. Nat. Sci. Sleep 5 93–107.

27.

Gruen, M. E., Alfaro-Córdoba, M., Thomson, A. E., Worth, A. C., Staicu, A.-M. and Lascelles, B. D. X. (2017). The use of functional data analysis to evaluate activity in a spontaneous model of degenerative joint disease associated pain in cats. PLoS ONE 12 e0169576.Gruen, M. E., Alfaro-Córdoba, M., Thomson, A. E., Worth, A. C., Staicu, A.-M. and Lascelles, B. D. X. (2017). The use of functional data analysis to evaluate activity in a spontaneous model of degenerative joint disease associated pain in cats. PLoS ONE 12 e0169576.

28.

Helske, S. and Helske, J. (2019). Mixture hidden Markov models for sequence data: The seqHMM package in R. J. Stat. Softw. 88 1–32.Helske, S. and Helske, J. (2019). Mixture hidden Markov models for sequence data: The seqHMM package in R. J. Stat. Softw. 88 1–32.

29.

Hoff, P. D., Raftery, A. E. and Handcock, M. S. (2002). Latent space approaches to social network analysis. J. Amer. Statist. Assoc. 97 1090–1098. 1041.62098 10.1198/016214502388618906Hoff, P. D., Raftery, A. E. and Handcock, M. S. (2002). Latent space approaches to social network analysis. J. Amer. Statist. Assoc. 97 1090–1098. 1041.62098 10.1198/016214502388618906

30.

Huang, Q., Cohen, D., Komarzynski, S., Li, X.-M., Innominato, P., Lévi, F. and Finkenstädt, B. (2018). Hidden Markov models for monitoring circadian rhythmicity in telemetric activity data. J. R. Soc. Interface 15 20170885.Huang, Q., Cohen, D., Komarzynski, S., Li, X.-M., Innominato, P., Lévi, F. and Finkenstädt, B. (2018). Hidden Markov models for monitoring circadian rhythmicity in telemetric activity data. J. R. Soc. Interface 15 20170885.

31.

Huang, L., Bai, J., Ivanescu, A., Harris, T., Maurer, M., Green, P. and Zipunnikov, V. (2019). Multilevel matrix-variate analysis and its application to accelerometry-measured physical activity in clinical populations. J. Amer. Statist. Assoc. 114 553–564. 1420.62454 10.1080/01621459.2018.1482750Huang, L., Bai, J., Ivanescu, A., Harris, T., Maurer, M., Green, P. and Zipunnikov, V. (2019). Multilevel matrix-variate analysis and its application to accelerometry-measured physical activity in clinical populations. J. Amer. Statist. Assoc. 114 553–564. 1420.62454 10.1080/01621459.2018.1482750

32.

Hubert, L. and Arabie, P. (1985). Comparing partitions. J. Classification 2 193–218. 0587.62128Hubert, L. and Arabie, P. (1985). Comparing partitions. J. Classification 2 193–218. 0587.62128

33.

Hunt, L. and Jorgensen, M. (2011). Clustering mixed data. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1 352–361.Hunt, L. and Jorgensen, M. (2011). Clustering mixed data. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1 352–361.

34.

Hunter, D. R., Goodreau, S. M. and Handcock, M. S. (2008). Goodness of fit of social network models. J. Amer. Statist. Assoc. 103 248–258. 05564484 10.1198/016214507000000446Hunter, D. R., Goodreau, S. M. and Handcock, M. S. (2008). Goodness of fit of social network models. J. Amer. Statist. Assoc. 103 248–258. 05564484 10.1198/016214507000000446

35.

Immerwahr, S., Wyker, B., Bartley, K. and Eisenhower, D. (2012). The physical activity and transit survey device follow-up study: Methodology report. The New York City Department of Health and Mental Hygiene.Immerwahr, S., Wyker, B., Bartley, K. and Eisenhower, D. (2012). The physical activity and transit survey device follow-up study: Methodology report. The New York City Department of Health and Mental Hygiene.

36.

Innerd, P., Harrison, R. and Coulson, M. (2018). Using open source accelerometer analysis to assess physical activity and sedentary behaviour in overweight and obese adults. BMC Public Health 18 543.Innerd, P., Harrison, R. and Coulson, M. (2018). Using open source accelerometer analysis to assess physical activity and sedentary behaviour in overweight and obese adults. BMC Public Health 18 543.

37.

Karlis, D. and Meligkotsidou, L. (2007). Finite mixtures of multivariate Poisson distributions with application. J. Statist. Plann. Inference 137 1942–1960. 1116.60006 10.1016/j.jspi.2006.07.001Karlis, D. and Meligkotsidou, L. (2007). Finite mixtures of multivariate Poisson distributions with application. J. Statist. Plann. Inference 137 1942–1960. 1116.60006 10.1016/j.jspi.2006.07.001

38.

Kimm, S. Y., Glynn, N. W., Obarzanek, E., Kriska, A. M., Daniels, S. R., Barton, B. A. and Liu, K. (2005). Relation between the changes in physical activity and body-mass index during adolescence: A multicentre longitudinal study. Lancet 366 301–307.Kimm, S. Y., Glynn, N. W., Obarzanek, E., Kriska, A. M., Daniels, S. R., Barton, B. A. and Liu, K. (2005). Relation between the changes in physical activity and body-mass index during adolescence: A multicentre longitudinal study. Lancet 366 301–307.

39.

Kosmidis, I. and Karlis, D. (2016). Model-based clustering using copulas with applications. Stat. Comput. 26 1079–1099. 06652996 10.1007/s11222-015-9590-5Kosmidis, I. and Karlis, D. (2016). Model-based clustering using copulas with applications. Stat. Comput. 26 1079–1099. 06652996 10.1007/s11222-015-9590-5

40.

Lee, J. A. and Gill, J. (2018). Missing value imputation for physical activity data measured by accelerometer. Stat. Methods Med. Res. 27 490–506.Lee, J. A. and Gill, J. (2018). Missing value imputation for physical activity data measured by accelerometer. Stat. Methods Med. Res. 27 490–506.

41.

Lee, I.-M., Shiroma, E. J., Lobelo, F., Puska, P., Blair, S. N., Katzmarzyk, P. T. et al. (2012). Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 380 219–229.Lee, I.-M., Shiroma, E. J., Lobelo, F., Puska, P., Blair, S. N., Katzmarzyk, P. T. et al. (2012). Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 380 219–229.

42.

Levin, D. A. and Peres, Y. (2017). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI.Levin, D. A. and Peres, Y. (2017). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI.

43.

Lim, Y., Oh, H.-S. and Cheung, Y. K. (2019). Functional clustering of accelerometer data via transformed input variables. J. R. Stat. Soc. Ser. C. Appl. Stat. 68 495–520.Lim, Y., Oh, H.-S. and Cheung, Y. K. (2019). Functional clustering of accelerometer data via transformed input variables. J. R. Stat. Soc. Ser. C. Appl. Stat. 68 495–520.

44.

Lim, S., Wyker, B., Bartley, K. and Eisenhower, D. (2015). Measurement error of self-reported physical activity levels in New York city: Assessment and correction. Am. J. Epidemiol. 181 648–655.Lim, S., Wyker, B., Bartley, K. and Eisenhower, D. (2015). Measurement error of self-reported physical activity levels in New York city: Assessment and correction. Am. J. Epidemiol. 181 648–655.

45.

Maruotti, A. (2011). Mixed hidden Markov models for longitudinal data: An overview. Int. Stat. Rev. 79 427–454. 1238.62094 10.1111/j.1751-5823.2011.00160.xMaruotti, A. (2011). Mixed hidden Markov models for longitudinal data: An overview. Int. Stat. Rev. 79 427–454. 1238.62094 10.1111/j.1751-5823.2011.00160.x

46.

Matias, C., Rebafka, T. and Villers, F. (2018). A semiparametric extension of the stochastic block model for longitudinal networks. Biometrika 105 665–680. 06991025 10.1093/biomet/asy016Matias, C., Rebafka, T. and Villers, F. (2018). A semiparametric extension of the stochastic block model for longitudinal networks. Biometrika 105 665–680. 06991025 10.1093/biomet/asy016

47.

McLachlan, G. and Peel, D. (2000). Finite Mixture Models. Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley, New York. 0963.62061McLachlan, G. and Peel, D. (2000). Finite Mixture Models. Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley, New York. 0963.62061

48.

McNicholas, P. D. (2017). Mixture Model-Based Classification. CRC Press, Boca Raton, FL. 06744166McNicholas, P. D. (2017). Mixture Model-Based Classification. CRC Press, Boca Raton, FL. 06744166

49.

McTiernan, A. (2008). Mechanisms linking physical activity with cancer. Nat. Rev. Cancer 8 205–211.McTiernan, A. (2008). Mechanisms linking physical activity with cancer. Nat. Rev. Cancer 8 205–211.

50.

Morris, J. S., Arroyo, C., Coull, B. A., Ryan, L. M., Herrick, R. and Gortmaker, S. L. (2006). Using wavelet-based functional mixed models to characterize population heterogeneity in accelerometer profiles: A case study. J. Amer. Statist. Assoc. 101 1352–1364. 1171.62357 10.1198/016214506000000465Morris, J. S., Arroyo, C., Coull, B. A., Ryan, L. M., Herrick, R. and Gortmaker, S. L. (2006). Using wavelet-based functional mixed models to characterize population heterogeneity in accelerometer profiles: A case study. J. Amer. Statist. Assoc. 101 1352–1364. 1171.62357 10.1198/016214506000000465

51.

Noel, S. E., Mattocks, C., Emmett, P., Riddoch, C. J., Ness, A. R. and Newby, P. (2010). Use of accelerometer data in prediction equations for capturing implausible dietary intakes in adolescents. Am. J. Clin. Nutr. 92 1436–1445.Noel, S. E., Mattocks, C., Emmett, P., Riddoch, C. J., Ness, A. R. and Newby, P. (2010). Use of accelerometer data in prediction equations for capturing implausible dietary intakes in adolescents. Am. J. Clin. Nutr. 92 1436–1445.

52.

Palta, P., McMurray, R., Gouskova, N., Sotres-Alvarez, D., Davis, S., Carnethon, M., Castañeda, S., Gellman, M., Hankinson, A. L. et al. (2015). Self-reported and accelerometer-measured physical activity by body mass index in us Hispanic/latino adults: Hchs/sol. Preventive medicine reports 2 824–828.Palta, P., McMurray, R., Gouskova, N., Sotres-Alvarez, D., Davis, S., Carnethon, M., Castañeda, S., Gellman, M., Hankinson, A. L. et al. (2015). Self-reported and accelerometer-measured physical activity by body mass index in us Hispanic/latino adults: Hchs/sol. Preventive medicine reports 2 824–828.

53.

Pollak, C. P., Tryon, W. W., Nagaraja, H. and Dzwonczyk, R. (2001). How accurately does wrist actigraphy identify the states of sleep and wakefulness? Sleep 24 957–965.Pollak, C. P., Tryon, W. W., Nagaraja, H. and Dzwonczyk, R. (2001). How accurately does wrist actigraphy identify the states of sleep and wakefulness? Sleep 24 957–965.

54.

Sadeh, A., Sharkey, M. and Carskadon, M. A. (1994). Activity-based sleep-wake identification: An empirical test of methodological issues. Sleep 17 201–207.Sadeh, A., Sharkey, M. and Carskadon, M. A. (1994). Activity-based sleep-wake identification: An empirical test of methodological issues. Sleep 17 201–207.

55.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461–464. 0379.62005 10.1214/aos/1176344136 euclid.aos/1176344136Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461–464. 0379.62005 10.1214/aos/1176344136 euclid.aos/1176344136

56.

Scott, S. L., James, G. M. and Sugar, C. A. (2005). Hidden Markov models for longitudinal comparisons. J. Amer. Statist. Assoc. 100 359–369. 1117.62421 10.1198/016214504000001592Scott, S. L., James, G. M. and Sugar, C. A. (2005). Hidden Markov models for longitudinal comparisons. J. Amer. Statist. Assoc. 100 359–369. 1117.62421 10.1198/016214504000001592

57.

Slootmaker, S. M., Schuit, A. J., Chinapaw, M. J., Seidell, J. C. and Van Mechelen, W. (2009). Disagreement in physical activity assessed by accelerometer and self-report in subgroups of age, gender, education and weight status. Int. J. Behav. Nutr. Phys. Act. 6 17.Slootmaker, S. M., Schuit, A. J., Chinapaw, M. J., Seidell, J. C. and Van Mechelen, W. (2009). Disagreement in physical activity assessed by accelerometer and self-report in subgroups of age, gender, education and weight status. Int. J. Behav. Nutr. Phys. Act. 6 17.

58.

Taheri, S., Lin, L., Austin, D., Young, T. and Mignot, E. (2004). Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 1 e62.Taheri, S., Lin, L., Austin, D., Young, T. and Mignot, E. (2004). Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 1 e62.

59.

Teicher, H. (1963). Identifiability of finite mixtures. Ann. Math. Stat. 34 1265–1269. 0137.12704 10.1214/aoms/1177703862 euclid.aoms/1177703862Teicher, H. (1963). Identifiability of finite mixtures. Ann. Math. Stat. 34 1265–1269. 0137.12704 10.1214/aoms/1177703862 euclid.aoms/1177703862

60.

Teicher, H. (1967). Identifiability of mixtures of product measures. Ann. Math. Stat. 38 1300–1302. 0153.47904 10.1214/aoms/1177698805 euclid.aoms/1177698805Teicher, H. (1967). Identifiability of mixtures of product measures. Ann. Math. Stat. 38 1300–1302. 0153.47904 10.1214/aoms/1177698805 euclid.aoms/1177698805

61.

Titsias, M. K., Holmes, C. C. and Yau, C. (2016). Statistical inference in hidden Markov models using $k$-segment constraints. J. Amer. Statist. Assoc. 111 200–215.Titsias, M. K., Holmes, C. C. and Yau, C. (2016). Statistical inference in hidden Markov models using $k$-segment constraints. J. Amer. Statist. Assoc. 111 200–215.

62.

Troiano, R. P., Berrigan, D., Dodd, K. W., Masse, L. C., Tilert, T. and McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 40 181–188.Troiano, R. P., Berrigan, D., Dodd, K. W., Masse, L. C., Tilert, T. and McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 40 181–188.

63.

. US Department of Health and Human Services (2008). 2008 physical activity guidelines for americans: Be active, healthy, and happy! Available at  http://www.health.gov/paguidelines.. US Department of Health and Human Services (2008). 2008 physical activity guidelines for americans: Be active, healthy, and happy! Available at  http://www.health.gov/paguidelines.

64.

van Hees, V. T., Sabia, S., Anderson, K. N., Denton, S. J., Oliver, J., Catt, M., Abell, J. G., Kivimäki, M., Trenell, M. I. et al. (2015). A novel, open access method to assess sleep duration using a wrist-worn accelerometer. PLoS ONE 10 e0142533.van Hees, V. T., Sabia, S., Anderson, K. N., Denton, S. J., Oliver, J., Catt, M., Abell, J. G., Kivimäki, M., Trenell, M. I. et al. (2015). A novel, open access method to assess sleep duration using a wrist-worn accelerometer. PLoS ONE 10 e0142533.

65.

Van de Pol, F. and Langeheine, R. (1990). Mixed Markov latent class models. Sociol. Method. 213–247.Van de Pol, F. and Langeheine, R. (1990). Mixed Markov latent class models. Sociol. Method. 213–247.

66.

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. J. Amer. Statist. Assoc. 13 260–269. 0148.40501 10.1109/TIT.1967.1054010Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. J. Amer. Statist. Assoc. 13 260–269. 0148.40501 10.1109/TIT.1967.1054010

67.

Wallace, M. L., Buysse, D. J., Germain, A., Hall, M. H. and Iyengar, S. (2018). Variable selection for skewed model-based clustering: Application to the identification of novel sleep phenotypes. J. Amer. Statist. Assoc. 113 95–110. 1398.62347 10.1080/01621459.2017.1330202Wallace, M. L., Buysse, D. J., Germain, A., Hall, M. H. and Iyengar, S. (2018). Variable selection for skewed model-based clustering: Application to the identification of novel sleep phenotypes. J. Amer. Statist. Assoc. 113 95–110. 1398.62347 10.1080/01621459.2017.1330202

68.

Witowski, V., Foraita, R., Pitsiladis, Y., Pigeot, I. and Wirsik, N. (2014). Using hidden Markov models to improve quantifying physical activity in accelerometer data—a simulation study. PLoS ONE 9 e114089.Witowski, V., Foraita, R., Pitsiladis, Y., Pigeot, I. and Wirsik, N. (2014). Using hidden Markov models to improve quantifying physical activity in accelerometer data—a simulation study. PLoS ONE 9 e114089.

69.

Wong, C. S. and Li, W. K. (2000). On a mixture autoregressive model. J. R. Stat. Soc. Ser. B. Stat. Methodol. 62 95–115. 0941.62095 10.1111/1467-9868.00222Wong, C. S. and Li, W. K. (2000). On a mixture autoregressive model. J. R. Stat. Soc. Ser. B. Stat. Methodol. 62 95–115. 0941.62095 10.1111/1467-9868.00222

70.

Wyker, B., Bartley, K., Holder-Hayes, E., Immerwahr, S., Eisenhower, D. and Harris, T. (2013). Self-reported and accelerometer-measured physical activity: a comparison in new york city. New York (NY): New York City Department of Health and Mental Hygiene: Epi Research Report, 1–12.Wyker, B., Bartley, K., Holder-Hayes, E., Immerwahr, S., Eisenhower, D. and Harris, T. (2013). Self-reported and accelerometer-measured physical activity: a comparison in new york city. New York (NY): New York City Department of Health and Mental Hygiene: Epi Research Report, 1–12.

71.

Xiao, L., Huang, L., Schrack, J. A., Ferrucci, L., Zipunnikov, V. and Crainiceanu, C. M. (2015). Quantifying the lifetime circadian rhythm of physical activity: A covariate-dependent functional approach. Biostatistics 16 352–367.Xiao, L., Huang, L., Schrack, J. A., Ferrucci, L., Zipunnikov, V. and Crainiceanu, C. M. (2015). Quantifying the lifetime circadian rhythm of physical activity: A covariate-dependent functional approach. Biostatistics 16 352–367.

72.

Yang, C.-C. and Hsu, Y.-L. (2010). A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 10 7772–7788.Yang, C.-C. and Hsu, Y.-L. (2010). A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 10 7772–7788.
Copyright © 2020 Institute of Mathematical Statistics
Marie Du Roy de Chaumaray, Matthieu Marbac, and Fabien Navarro "Mixture of hidden Markov models for accelerometer data," The Annals of Applied Statistics 14(4), 1834-1855, (December 2020). https://doi.org/10.1214/20-AOAS1375
Received: 1 March 2020; Published: December 2020
Vol.14 • No. 4 • December 2020
Back to Top