Annals of Applied Statistics

Fire seasonality identification with multimodality tests

Jose Ameijeiras-Alonso, Akli Benali, Rosa M. Crujeiras, Alberto Rodríguez-Casal, and José M. C. Pereira

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Understanding the role of vegetation fires in the Earth system is an important environmental problem. Although fire occurrence is influenced by natural factors, human activity related to land use and management has altered the temporal patterns of fire in several regions of the world. Hence, for a better insight into fires regimes it is of special interest to analyze where human activity has altered fire seasonality. For doing so, multimodality tests are a useful tool for determining the number of annual fire peaks. The periodicity of fires and their complex distributional features motivate the use of nonparametric circular statistics. The unsatisfactory performance of previous circular nonparametric proposals for testing multimodality justifies the introduction of a new approach, considering an adapted version of the excess mass statistic, jointly with a bootstrap calibration algorithm. A systematic application of the test on the Russia–Kazakhstan area is presented in order to determine how many fire peaks can be identified in this region. A False Discovery Rate correction, accounting for the spatial dependence of the data, is also required.

Article information

Source
Ann. Appl. Stat., Volume 13, Number 4 (2019), 2120-2139.

Dates
Received: October 2018
Revised: May 2019
First available in Project Euclid: 28 November 2019

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1574910038

Digital Object Identifier
doi:10.1214/19-AOAS1273

Mathematical Reviews number (MathSciNet)
MR4037424

Zentralblatt MATH identifier
07160933

Keywords
Circular data multimodality multiple testing wildfires

Citation

Ameijeiras-Alonso, Jose; Benali, Akli; Crujeiras, Rosa M.; Rodríguez-Casal, Alberto; Pereira, José M. C. Fire seasonality identification with multimodality tests. Ann. Appl. Stat. 13 (2019), no. 4, 2120--2139. doi:10.1214/19-AOAS1273. https://projecteuclid.org/euclid.aoas/1574910038


Export citation

References

  • Ameijeiras-Alonso, J., Crujeiras, R. M. and Rodríguez-Casal, A. (2018). Applied directional statistics: Modern methods and case studies. In Chap. Directional Statistics for Wildfires (C. Ley and T. Verdebout, eds.) Chapman and Hall/CRC Press, Boca Raton, FL.
  • Ameijeiras-Alonso, J., Crujeiras, R. M. and Rodríguez-Casal, A. (2019a). Mode testing, critical bandwidth and excess mass. Test. To appear. DOI:https://www.doi.org/10.1007/s11749-018-0611-5.
  • Ameijeiras-Alonso, J., Crujeiras, R. M. and Rodríguez-Casal, A. (2019b). Supplement to “Fire seasonality identification with multimodality tests.” DOI:10.1214/19-AOAS1273SUPP.
  • Benali, A., Mota, B., Carvalhais, N., Oom, D., Miller, L. M., Campagnolo, M. L. and Pereira, J. M. C. (2017). Bimodal fire regimes unveil a global scale anthropogenic fingerprint. Glob. Ecol. Biogeogr. 26 799–811.
  • Benjamini, Y. and Heller, R. (2007). False discovery rates for spatial signals. J. Amer. Statist. Assoc. 102 1272–1281.
  • Benjamini, Y. and Hochberg, Y. (1997). Multiple hypotheses testing with weights. Scand. J. Stat. 24 407–418.
  • Benjamini, Y., Krieger, A. M. and Yekutieli, D. (2006). Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93 491–507.
  • Cheng, M.-Y. and Hall, P. (1998). Calibrating the excess mass and dip tests of modality. J. R. Stat. Soc. Ser. B. Stat. Methodol. 60 579–589.
  • Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley, New York.
  • Fisher, N. I. and Marron, J. S. (2001). Mode testing via the excess mass estimate. Biometrika 88 499–517.
  • Giglio, L., Descloitres, J., Justice, C. O. and Kaufman, Y. J. (2003). An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment 87 273–282.
  • Hall, P. and York, M. (2001). On the calibration of Silverman’s test for multimodality. Statist. Sinica 11 515–536.
  • Hall, J. V., Loboda, T. V., Giglio, L. and McCarty, G. W. (2016). A MODIS-based burned area assessment for Russian croplands: Mapping requirements and challenges. Remote Sensing of Environment 184 506–521.
  • Huckemann, S., Kim, K.-R., Munk, A., Rehfeldt, F., Sommerfeld, M., Weickert, J. and Wollnik, C. (2016). The circular SiZer, inferred persistence of shape parameters and application to early stem cell differentiation. Bernoulli 22 2113–2142.
  • Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 186 453–461.
  • Keeley, J. E., Safford, H., Fotheringham, C. J., Franklin, J. and Moritz, M. (2009). The 2007 southern California wildfires: Lessons in complexity. Journal of Forestry 107 287–296.
  • Korontzi, S., McCarty, J., Loboda, T., Kumar, S. and Justice, C. O. (2006). Global distribution of agricultural fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data. Global Biogeochemical Cycles 20 202101–202115.
  • Le Page, Y., Oom, D., Silva, J., Jönsson, P. and Pereira, J. M. C. (2010). Seasonality of vegetation fires as modified by human action: Observing the deviation from eco-climatic fire regimes. Glob. Ecol. Biogeogr. 19 575–588.
  • Ley, C. and Verdebout, T. (2017). Modern Directional Statistics. Chapman & Hall/CRC Interdisciplinary Statistics Series. CRC Press, Boca Raton, FL.
  • Loboda, T. V., Giglio, L., Boschetti, L. and Justice, C. O. (2012). Regional fire monitoring and characterization using global NASA MODIS fire products in dry lands of Central Asia. Front. Earth Sci. 6 196–205.
  • Magi, B. I., Rabin, S., Shevliakova, E. and Pacala, S. (2012). Separating agricultural and non-agricultural fire seasonality at regional scales. Biogeosciences 9 3003–3012.
  • Müller, D. W. and Sawitzki, G. (1991). Excess mass estimates and tests for multimodality. J. Amer. Statist. Assoc. 86 738–746.
  • Nichols, K., Schoenberg, F. P., Keeley, J. E., Bray, A. and Diez, D. (2011). The application of prototype point processes for the summary and description of California wildfires. J. Time Series Anal. 32 420–429.
  • Oliveira, M., Crujeiras, R. M. and Rodríguez-Casal, A. (2012). A plug-in rule for bandwidth selection in circular density estimation. Comput. Statist. Data Anal. 56 3898–3908.
  • Silverman, B. W. (1981). Using kernel density estimates to investigate multimodality. J. Roy. Statist. Soc. Ser. B 43 97–99.
  • Watson, G. S. (1961). Goodness-of-fit tests on a circle. Biometrika 48 109–114.
  • Westerling, A. L., Gershunov, A., Brown, T. J., Cayan, D. R. and Dettinger, M. D. (2003). Climate and wildfire in the western United States. Bull. Am. Meteorol. Soc. 84 595–604.
  • Xu, H. and Schoenberg, F. P. (2011). Point process modeling of wildfire hazard in Los Angeles County, California. Ann. Appl. Stat. 5 684–704.

Supplemental materials

  • Supplementary material of fire seasonality identification with multimodality test. This Supplementary Material provides details on the models employed in the simulation study; a complete description of the calibration function used to generate the resamples in the bootstrap procedure with some theoretical background; some further simulation results showing rejection rates for different scenarios; and the construction of the land cover patches cells where a similar fire behavior is expected.