Open Access
September 2019 Fast dynamic nonparametric distribution tracking in electron microscopic data
Yanjun Qian, Jianhua Z. Huang, Chiwoo Park, Yu Ding
Ann. Appl. Stat. 13(3): 1537-1563 (September 2019). DOI: 10.1214/19-AOAS1245
Abstract

In situ transmission electron microscope (TEM) adds a promising instrument to the exploration of the nanoscale world, allowing motion pictures to be taken while nano objects are initiating, crystalizing and morphing into different sizes and shapes. To enable in-process control of nanocrystal production, this technology innovation hinges upon a solution addressing a statistical problem, which is the capability of online tracking a dynamic, time-varying probability distribution reflecting the nanocrystal growth. Because no known parametric density functions can adequately describe the evolving distribution, a nonparametric approach is inevitable. Towards this objective, we propose to incorporate the dynamic evolution of the normalized particle size distribution into a state space model, in which the density function is represented by a linear combination of B-splines and the spline coefficients are treated as states. The closed-form algorithm runs online updates faster than the frame rate of the in situ TEM video, making it suitable for in-process control purpose. Imposing the constraints of curve smoothness and temporal continuity improves the accuracy and robustness while tracking the probability distribution. We test our method on three published TEM videos. For all of them, the proposed method is able to outperform several alternative approaches.

References

1.

Aldous, D. J. (1999). Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists. Bernoulli 5 3–48. 0930.60096 10.2307/3318611 euclid.bj/1173707093Aldous, D. J. (1999). Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists. Bernoulli 5 3–48. 0930.60096 10.2307/3318611 euclid.bj/1173707093

2.

Anscombe, F. J. (1948). The transformation of Poisson, binomial and negative-binomial data. Biometrika 35 246–254. 0032.03702 10.1093/biomet/35.3-4.246Anscombe, F. J. (1948). The transformation of Poisson, binomial and negative-binomial data. Biometrika 35 246–254. 0032.03702 10.1093/biomet/35.3-4.246

3.

Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W. (1975). Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge, MA. MR0381130 0332.62039Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W. (1975). Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge, MA. MR0381130 0332.62039

4.

Boal, A. K., Ilhan, F., DeRouchey, J. E., Thurn-Albrecht, T., Russell, T. P. and Rotello, V. M. (2000). Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404 746–748.Boal, A. K., Ilhan, F., DeRouchey, J. E., Thurn-Albrecht, T., Russell, T. P. and Rotello, V. M. (2000). Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404 746–748.

5.

Brown, L., Cai, T., Zhang, R., Zhao, L. and Zhou, H. (2010). The root-unroot algorithm for density estimation as implemented via wavelet block thresholding. Probab. Theory Related Fields 146 401–433. 1180.62055 10.1007/s00440-008-0194-2Brown, L., Cai, T., Zhang, R., Zhao, L. and Zhou, H. (2010). The root-unroot algorithm for density estimation as implemented via wavelet block thresholding. Probab. Theory Related Fields 146 401–433. 1180.62055 10.1007/s00440-008-0194-2

6.

de Jong, P. and Shephard, N. (1995). The simulation smoother for time series models. Biometrika 82 339–350. 0823.62072 10.1093/biomet/82.2.339de Jong, P. and Shephard, N. (1995). The simulation smoother for time series models. Biometrika 82 339–350. 0823.62072 10.1093/biomet/82.2.339

7.

Doucet, A., Gordon, N. J. and Krishnamurthy, V. (2001). Particle filters for state estimation of jump Markov linear systems. IEEE Trans. Signal Process. 49 613–624.Doucet, A., Gordon, N. J. and Krishnamurthy, V. (2001). Particle filters for state estimation of jump Markov linear systems. IEEE Trans. Signal Process. 49 613–624.

8.

Durbin, J. and Koopman, S. J. (1997). Monte Carlo maximum likelihood estimation for non-Gaussian state space models. Biometrika 84 669–684. 0888.62086 10.1093/biomet/84.3.669Durbin, J. and Koopman, S. J. (1997). Monte Carlo maximum likelihood estimation for non-Gaussian state space models. Biometrika 84 669–684. 0888.62086 10.1093/biomet/84.3.669

9.

Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with $B$-splines and penalties. Statist. Sci. 11 89–121. 0955.62562 10.1214/ss/1038425655 euclid.ss/1038425655Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with $B$-splines and penalties. Statist. Sci. 11 89–121. 0955.62562 10.1214/ss/1038425655 euclid.ss/1038425655

10.

Grzelczak, M., Vermant, J., Furst, E. M. and Liz-Marzán, L. M. (2010). Directed self-assembly of nanoparticles. ACS Nano 4 3591–3605.Grzelczak, M., Vermant, J., Furst, E. M. and Liz-Marzán, L. M. (2010). Directed self-assembly of nanoparticles. ACS Nano 4 3591–3605.

11.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. J. Basic Eng. 82 35–45.Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. J. Basic Eng. 82 35–45.

12.

Li, M., Schnablegger, H. and Mann, S. (1999). Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402 393–395.Li, M., Schnablegger, H. and Mann, S. (1999). Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402 393–395.

13.

Lifshitz, I. and Slyozov, V. (1961). The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19 35–50.Lifshitz, I. and Slyozov, V. (1961). The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19 35–50.

14.

Ljung, L. (1979). Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans. Automat. Control 24 36–50. 0399.93054 10.1109/TAC.1979.1101943Ljung, L. (1979). Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans. Automat. Control 24 36–50. 0399.93054 10.1109/TAC.1979.1101943

15.

Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates. I. Density estimates. Ann. Statist. 12 351–357. 0557.62036 10.1214/aos/1176346412 euclid.aos/1176346412Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates. I. Density estimates. Ann. Statist. 12 351–357. 0557.62036 10.1214/aos/1176346412 euclid.aos/1176346412

16.

Ma, J., Kockelman, K. M. and Damien, P. (2008). A multivariate Poisson-lognormal regression model for prediction of crash counts by severity using Bayesian methods. Accident Anal. Prev. 40 964–975.Ma, J., Kockelman, K. M. and Damien, P. (2008). A multivariate Poisson-lognormal regression model for prediction of crash counts by severity using Bayesian methods. Accident Anal. Prev. 40 964–975.

17.

Mahalanobis, P. C. (1993). On the generalized distance in statistics. Proc. Natl. Inst. Sci. India 2 49–55. 0015.03302Mahalanobis, P. C. (1993). On the generalized distance in statistics. Proc. Natl. Inst. Sci. India 2 49–55. 0015.03302

18.

Mena, R. H. and Ruggiero, M. (2016). Dynamic density estimation with diffusive Dirichlet mixtures. Bernoulli 22 901–926. 1388.62099 10.3150/14-BEJ681 euclid.bj/1447077764Mena, R. H. and Ruggiero, M. (2016). Dynamic density estimation with diffusive Dirichlet mixtures. Bernoulli 22 901–926. 1388.62099 10.3150/14-BEJ681 euclid.bj/1447077764

19.

Muneesawang, P. and Sirisathitkul, C. (2015). Size measurement of nanoparticle assembly using multilevel segmented TEM images. J. Nanomater. 16 58–63.Muneesawang, P. and Sirisathitkul, C. (2015). Size measurement of nanoparticle assembly using multilevel segmented TEM images. J. Nanomater. 16 58–63.

20.

Park, C. (2014). Estimating multiple pathways of object growth using nonlongitudinal image data. Technometrics 56 186–199.Park, C. (2014). Estimating multiple pathways of object growth using nonlongitudinal image data. Technometrics 56 186–199.

21.

Park, C., Huang, J., Huitink, D., Kundu, S., Mallick, B., Liang, H. and Ding, Y. (2012). A multi-stage, semi-automated procedure for analyzing the morphology of nanoparticles. IIE Trans. 44 507–522.Park, C., Huang, J., Huitink, D., Kundu, S., Mallick, B., Liang, H. and Ding, Y. (2012). A multi-stage, semi-automated procedure for analyzing the morphology of nanoparticles. IIE Trans. 44 507–522.

22.

Park, C., Huang, J., Ji, J. and Ding, Y. (2013). Segmentation, inference and classification of partially overlapping nanoparticles. IEEE Trans. Pattern Anal. Mach. Intell. 35 669–681.Park, C., Huang, J., Ji, J. and Ding, Y. (2013). Segmentation, inference and classification of partially overlapping nanoparticles. IEEE Trans. Pattern Anal. Mach. Intell. 35 669–681.

23.

Park, C., Woehl, T. J., Evans, J. E. and Browning, N. D. (2015). Minimum cost multi-way data association for optimizing multitarget tracking of interacting objects. IEEE Trans. Pattern Anal. Mach. Intell. 37 611–624.Park, C., Woehl, T. J., Evans, J. E. and Browning, N. D. (2015). Minimum cost multi-way data association for optimizing multitarget tracking of interacting objects. IEEE Trans. Pattern Anal. Mach. Intell. 37 611–624.

24.

Qian, Y., Huang, J. Z. and Ding, Y. (2017). Identifying multi-stage nanocrystal growth using in situ TEM video data. IISE Trans. 49 532–543.Qian, Y., Huang, J. Z. and Ding, Y. (2017). Identifying multi-stage nanocrystal growth using in situ TEM video data. IISE Trans. 49 532–543.

25.

Qian, Y., Huang, J. Z., Li, X. and Ding, Y. (2016). Robust nanoparticles detection from noisy background by fusing complementary image information. IEEE Trans. Image Process. 25 5713–5726. 1408.94547 10.1109/TIP.2016.2614127Qian, Y., Huang, J. Z., Li, X. and Ding, Y. (2016). Robust nanoparticles detection from noisy background by fusing complementary image information. IEEE Trans. Image Process. 25 5713–5726. 1408.94547 10.1109/TIP.2016.2614127

26.

Qian, Y., Huang, J. Z., Park, C. and Ding, Y. (2019). Supplement to “Fast dynamic nonparametric distribution tracking in electron microscopic data.”  DOI:10.1214/19-AOAS1245SUPPA,  DOI:10.1214/19-AOAS1245SUPPB.Qian, Y., Huang, J. Z., Park, C. and Ding, Y. (2019). Supplement to “Fast dynamic nonparametric distribution tracking in electron microscopic data.”  DOI:10.1214/19-AOAS1245SUPPA,  DOI:10.1214/19-AOAS1245SUPPB.

27.

Rodriguez, A. and Ter Horst, E. (2008). Bayesian dynamic density estimation. Bayesian Anal. 3 339–365. 1330.62180 10.1214/08-BA313Rodriguez, A. and Ter Horst, E. (2008). Bayesian dynamic density estimation. Bayesian Anal. 3 339–365. 1330.62180 10.1214/08-BA313

28.

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. J. Roy. Statist. Soc. Ser. B 53 683–690. 0800.62219 10.1111/j.2517-6161.1991.tb01857.xSheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. J. Roy. Statist. Soc. Ser. B 53 683–690. 0800.62219 10.1111/j.2517-6161.1991.tb01857.x

29.

Simonoff, J. S. (1983). A penalty function approach to smoothing large sparse contingency tables. Ann. Statist. 11 208–218. 0527.62043 10.1214/aos/1176346071 euclid.aos/1176346071Simonoff, J. S. (1983). A penalty function approach to smoothing large sparse contingency tables. Ann. Statist. 11 208–218. 0527.62043 10.1214/aos/1176346071 euclid.aos/1176346071

30.

Spiegelhalter, D., Thomas, A., Best, N. and Gilks, W. (1996). BUGS 0.5: Bayesian inference using Gibbs sampling manual (versio ii). In MRC Biostatistics Unit 1–59. Institute of Public Health, Cambridge, UK.Spiegelhalter, D., Thomas, A., Best, N. and Gilks, W. (1996). BUGS 0.5: Bayesian inference using Gibbs sampling manual (versio ii). In MRC Biostatistics Unit 1–59. Institute of Public Health, Cambridge, UK.

31.

Wahba, G. (1990). Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics 59. SIAM, Philadelphia, PA. 0813.62001Wahba, G. (1990). Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics 59. SIAM, Philadelphia, PA. 0813.62001

32.

Woehl, T. J., Park, C., Evans, J. E., Arslan, I., Ristenpart, W. D. and Browning, N. D. (2013). Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate. Nano Lett. 14 373–378.Woehl, T. J., Park, C., Evans, J. E., Arslan, I., Ristenpart, W. D. and Browning, N. D. (2013). Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate. Nano Lett. 14 373–378.

33.

Zhang, C., Chen, N. and Li, Z. (2017). State space modeling of autocorrelated multivariate Poisson counts. IISE Trans. 49 518–531.Zhang, C., Chen, N. and Li, Z. (2017). State space modeling of autocorrelated multivariate Poisson counts. IISE Trans. 49 518–531.

34.

Zheng, H., Smith, R. K., Jun, Y. W., Kisielowski, C., Dahmen, U. and Alivisatos, A. P. (2009). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324 1309–1312.Zheng, H., Smith, R. K., Jun, Y. W., Kisielowski, C., Dahmen, U. and Alivisatos, A. P. (2009). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324 1309–1312.
Copyright © 2019 Institute of Mathematical Statistics
Yanjun Qian, Jianhua Z. Huang, Chiwoo Park, and Yu Ding "Fast dynamic nonparametric distribution tracking in electron microscopic data," The Annals of Applied Statistics 13(3), 1537-1563, (September 2019). https://doi.org/10.1214/19-AOAS1245
Received: 1 April 2018; Published: September 2019
Vol.13 • No. 3 • September 2019
Back to Top