The Annals of Applied Statistics

Reducing storage of global wind ensembles with stochastic generators

Jaehong Jeong, Stefano Castruccio, Paola Crippa, and Marc G. Genton

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth’s orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

Article information

Source
Ann. Appl. Stat. Volume 12, Number 1 (2018), 490-509.

Dates
Received: June 2017
Revised: September 2017
First available in Project Euclid: 9 March 2018

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1520564481

Digital Object Identifier
doi:10.1214/17-AOAS1105

Keywords
Axial symmetry nonstationarity spatio-temporal covariance model sphere stochastic generator surface wind speed

Citation

Jeong, Jaehong; Castruccio, Stefano; Crippa, Paola; Genton, Marc G. Reducing storage of global wind ensembles with stochastic generators. Ann. Appl. Stat. 12 (2018), no. 1, 490--509. doi:10.1214/17-AOAS1105. https://projecteuclid.org/euclid.aoas/1520564481


Export citation

References

  • Baker, A. H., Xu, H., Dennis, J. M., Levy, M. N., Nychka, D., Mickelson, S. A., Edwards, J., Vertenstein, M. and Wegener, A. (2014). A methodology for evaluating the impact of data compression on climate simulation data. In Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Computing HPDC ’14 203–214. ACM.
  • Baker, A. H., Hammerling, D. M., Mickelson, S. A., Xu, H., Stolpe, M. B., Naveau, P., Sanderson, B., Ebert-Uphoff, I., Samarasinghe, S., De Simone, F., Carbone, F., Gencarelli, C. N., Dennis, J. M., Kay, J. E. and Lindstrom, P. (2016). Evaluating lossy data compression on climate simulation data within a large ensemble. Geosci. Model Dev. 9 4381–4403.
  • Banuelos-Ruedas, F., Angeles-Camacho, C. and Rios-Marcuello, S. (2011). Methodologies Used in the Extrapolation of Wind Speed Data at Different Heights and Its Impact in the Wind Energy Resource Assessment in a Region. INTECH Open Access Publisher.
  • Barthelmie, R. J. and Pryor, S. C. (2014). Potential contribution of wind energy to climate change mitigation. Nature Climate Change 4 684–688.
  • Betts, A. K. and Ridgway, W. (1988). Coupling of the radiative, convective, and surface fluxes over the equatorial pacific. J. Atmos. Sci. 45 522–536.
  • Blyth, S., Groombridge, B., Lysenko, I., Miles, L. and Newton, A. (2002). Mountain Watch: Environmental Change & Sustainable Developmental in Mountains. UNEP-WCMC, Cambridge.
  • Bolin, D. and Lindgren, F. (2011). Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping. Ann. Appl. Stat. 5 523–550.
  • Branstator, G. and Teng, H. (2010). Two limits of initial-value decadal predictability in a CGCM. J. Climate 23 6292–6311.
  • Castruccio, S. and Genton, M. G. (2014). Beyond axial symmetry: An improved class of models for global data. Stat 3 48–55.
  • Castruccio, S. and Genton, M. G. (2016). Compressing an ensemble with statistical models: An algorithm for global 3D spatio-temporal temperature. Technometrics 58 319–328.
  • Castruccio, S. and Guinness, J. (2017). An evolutionary spectrum approach to incorporate large-scale geographical descriptors on global processes. J. R. Stat. Soc. Ser. C. Appl. Stat. 66 329–344.
  • Castruccio, S. and Stein, M. L. (2013). Global space–time models for climate ensembles. Ann. Appl. Stat. 7 1593–1611.
  • Clarke, J., Alegría, A. and Porcu, E. (2016). Regularity properties and simulations of Gaussian random fields on the sphere cross time. ArXiv Preprint arXiv:1611.02851.
  • Collins, M. (2002). Climate predictability on interannual to decadal time scales: The initial value problem. Clim. Dyn. 19 671–692.
  • Collins, M. and Allen, M. R. (2002). Assessing the relative roles of initial and boundary conditions in interannual to decadal climate predictability. J. Climate 15 3104–3109.
  • Das, B. (2000). Global covariance modeling: A deformation approach to anisotropy. Ph.D. thesis, Univ. Washington.
  • Davis, P. J. (1979). Circulant Matrices. Wiley, New York.
  • Gastineau, G., Li, L. and Le Treut, H. (2009). The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations. J. Climate 22 3993–4013.
  • Gneiting, T. (2013). Strictly and non-strictly positive definite functions on spheres. Bernoulli 19 1327–1349.
  • Guinness, J. and Hammerling, D. (2017). Compression and conditional emulation of climate model output. J. Amer. Statist. Assoc. To appear.
  • Heaton, M. J., Katzfuss, M., Berrett, C. and Nychka, D. W. (2014). Constructing valid spatial processes on the sphere using kernel convolutions. Environmetrics 25 2–15.
  • Hitczenko, M. and Stein, M. L. (2012). Some theory for anisotropic processes on the sphere. Stat. Methodol. 9 211–227.
  • Jeong, J., Jun, M. and Genton, M. G. (2017). Spherical process models for global spatial statistics. Statist. Sci. 32 501–513.
  • Jeong, J., Castruccio, S., Crippa, P. and Genton, M. G. (2018). Supplement to “Reducing storage of global wind ensembles with stochastic generators.” DOI:10.1214/17-AOAS1105SUPP.
  • Jones, R. H. (1963). Stochastic processes on a sphere. Ann. Math. Stat. 34 213–218.
  • Jun, M. (2011). Non-stationary cross-covariance models for multivariate processes on a globe. Scand. J. Stat. 38 726–747.
  • Jun, M. (2014). Matérn-based nonstationary cross-covariance models for global processes. J. Multivariate Anal. 128 134–146.
  • Jun, M. and Stein, M. L. (2007). An approach to producing space–time covariance functions on spheres. Technometrics 49 468–479.
  • Jun, M. and Stein, M. L. (2008). Nonstationary covariance models for global data. Ann. Appl. Stat. 2 1271–1289.
  • Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L. and Vertenstein, M. (2015). The community earth system model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96 1333–1349.
  • Lindgren, F., Rue, H. and Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B. Stat. Methodol. 73 423–498.
  • Lorenz, E. N. (1963). Deterministic nonperiodic flow. J. Atmos. Sci. 20 130–141.
  • Ma, C. (2015). Isotropic covariance matrix functions on all spheres. Math. Geosci. 47 699–717.
  • McInnes, K. L., Erwin, T. A. and Bathols, J. M. (2011). Global climate model projected changes in 10 m wind speed and direction due to anthropogenic climate change. Atmos. Sci. Lett. 12 325–333.
  • Mearns, L., Hulme, M., Carter, T., Leemans, R., Lal, M. and Whetton, P. (2001). Climate scenario development. In Climate Change 2001: The Scientific Basis. Cambridge Univ. Press, Cambridge.
  • Moomaw, W., Yamba, F., Kamimoto, M., Maurice, L., Nyboer, J., Urama, K. and Weir, T. (2011). Renewable energy and climate change. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen and S. Schlömer, eds.) 161–208. Cambridge Univ. Press, Cambridge.
  • Obama, B. (2017). The irreversible momentum of clean energy. Science 355 126–129.
  • Poppick, A. and Stein, M. L. (2014). Using covariates to model dependence in nonstationary, high-frequency meteorological processes. Environmetrics 25 293–305.
  • Porcu, E., Bevilacqua, M. and Genton, M. G. (2016). Spatio-temporal covariance and cross-covariance functions of the great circle distance on a sphere. J. Amer. Statist. Assoc. 111 888–898.
  • Priestley, M. B. (1965). Evolutionary spectra and non-stationary processes. J. Roy. Statist. Soc. Ser. B 204–237.
  • Soman, S. S., Zareipour, H., Malik, O. and Mandal, P. (2010). A review of wind power and wind speed forecasting methods with different time horizons. In North American Power Symposium (NAPS), 2010 1–8. IEEE.
  • Stein, M. L. (2007). Spatial variation of total column ozone on a global scale. Ann. Appl. Stat. 1 191–210.
  • Tagle, F., Castruccio, S., Crippa, P. and Genton, M. G. (2017). Assessing potential wind energy resources in Saudi Arabia with a skew-t distribution. ArXiv Preprint arXiv:1703.04312.
  • Taylor, K. E., Stouffer, R. J. and Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93 485–498.
  • Tukey, J. W. (1967). An introduction to the calculations of numerical spectrum analysis. In Advanced Seminar on Spectral Analysis of Time Series (B. Harris, ed.) 25–46. Wiley, New York.
  • van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J. and Rose, S. K. (2011). The representative concentration pathways: An overview. Clim. Change 109 5–31.
  • Vaughan, R. A. and Cracknell, A. P. (2013). Remote Sensing and Global Climate Change 24. Springer Science & Business Media.
  • Wiser, R., Yang, Z., Hand, M., Hohmeyer, O., Infield, D., Jensen, P. H., Nikolaev, V., O’Malley, M., Sinden, G. and Zervos, A. (2011). Wind energy. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen and S. Schlömer, eds.) 535–608. Cambridge Univ. Press, Cambridge.
  • Xu, G. and Genton, M. G. (2017). Tukey $g$-and-$h$ random fields. J. Amer. Statist. Assoc. 112 1236–1249.
  • Zhu, X. and Genton, M. G. (2012). Short-term wind speed forecasting for power system operations. Int. Stat. Rev. 80 2–23.

Supplemental materials

  • Supplement to “Reducing storage of global wind ensembles with stochastic generators”. Further technical details and a Graphical User Interface application in Matlab can be found in the online supplementary material.