Annals of Applied Statistics
- Ann. Appl. Stat.
- Volume 12, Number 1 (2018), 156-177.
Covariate balancing propensity score for a continuous treatment: Application to the efficacy of political advertisements
Christian Fong, Chad Hazlett, and Kosuke Imai
Abstract
Propensity score matching and weighting are popular methods when estimating causal effects in observational studies. Beyond the assumption of unconfoundedness, however, these methods also require the model for the propensity score to be correctly specified. The recently proposed covariate balancing propensity score (CBPS) methodology increases the robustness to model misspecification by directly optimizing sample covariate balance between the treatment and control groups. In this paper, we extend the CBPS to a continuous treatment. We propose the covariate balancing generalized propensity score (CBGPS) methodology, which minimizes the association between covariates and the treatment. We develop both parametric and nonparametric approaches and show their superior performance over the standard maximum likelihood estimation in a simulation study. The CBGPS methodology is applied to an observational study, whose goal is to estimate the causal effects of political advertisements on campaign contributions. We also provide open-source software that implements the proposed methods.
Article information
Source
Ann. Appl. Stat., Volume 12, Number 1 (2018), 156-177.
Dates
Received: January 2017
Revised: June 2017
First available in Project Euclid: 9 March 2018
Permanent link to this document
https://projecteuclid.org/euclid.aoas/1520564468
Digital Object Identifier
doi:10.1214/17-AOAS1101
Mathematical Reviews number (MathSciNet)
MR3773389
Zentralblatt MATH identifier
06894702
Keywords
Causal inference covariate balance generalized propensity score inverse-probability weighting treatment effect
Citation
Fong, Christian; Hazlett, Chad; Imai, Kosuke. Covariate balancing propensity score for a continuous treatment: Application to the efficacy of political advertisements. Ann. Appl. Stat. 12 (2018), no. 1, 156--177. doi:10.1214/17-AOAS1101. https://projecteuclid.org/euclid.aoas/1520564468

