The Annals of Applied Statistics

Statistical downscaling for future extreme wave heights in the North Sea

Ross Towe, Emma Eastoe, Jonathan Tawn, and Philip Jonathan

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

For safe offshore operations, accurate knowledge of the extreme oceanographic conditions is required. We develop a multi-step statistical downscaling algorithm using data from a low resolution global climate model (GCM) and local-scale hindcast data to make predictions of the extreme wave climate in the next 50-year period at locations in the North Sea. The GCM is unable to produce wave data accurately so instead we use its 3-hourly wind speed and direction data. By exploiting the relationships between wind characteristics and wave heights, a downscaling approach is developed to relate the large and local-scale data sets, and hence future changes in wind characteristics can be translated into changes in extreme wave distributions. We assess the performance of the methods using within sample testing and apply the method to derive future design levels over the northern North Sea.

Article information

Source
Ann. Appl. Stat. Volume 11, Number 4 (2017), 2375-2403.

Dates
Received: October 2016
Revised: May 2017
First available in Project Euclid: 28 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1514430290

Digital Object Identifier
doi:10.1214/17-AOAS1084

Keywords
Climate change covariate modelling environmental modelling extreme value theory sea waves statistical downscaling

Citation

Towe, Ross; Eastoe, Emma; Tawn, Jonathan; Jonathan, Philip. Statistical downscaling for future extreme wave heights in the North Sea. Ann. Appl. Stat. 11 (2017), no. 4, 2375--2403. doi:10.1214/17-AOAS1084. https://projecteuclid.org/euclid.aoas/1514430290


Export citation

References

  • Bechler, A., Vrac, M. and Bel, L. (2015). A spatial hybrid approach for downscaling of extreme precipitation fields. J. Geophys. Res., Atmos. 120 4534–4550.
  • Bellouin, N., Collins, W., Culverwell, I., Halloran, P., Hardiman, S., Hinton, T., Jones, C., McDonald, R., McLaren, A., O’Connor, F. et al. (2011). The Hadgem2 family of Met Office unified model climate configurations. Geosci. Model Dev. 4 723–757.
  • Bierbooms, W. (2003). Wind and wave conditions. DOWEC (Dutch Offshore Wind Energy Converter Project) 47.
  • Caires, S., Swail, V. and Wang, X. (2006). Projection and analysis of extreme wave climate. Climate 19 5581–5605.
  • Casas-Prat, M., Wang, X. and Sierra, J. (2014). A physical-based statistical method for modeling ocean wave heights. Ocean Model. 73 59–75.
  • Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer, London.
  • Coles, S. and Tawn, J. (1994). Statistical methods for multivariate extremes: An application to structural design (with discussion). J. R. Stat. Soc. Ser. C. Appl. Stat. 43 1–48.
  • Davison, A. C., Padoan, S. A. and Ribatet, M. (2012). Statistical modeling of spatial extremes. Statist. Sci. 27 161–186.
  • Davison, A. C. and Smith, R. L. (1990). Models for exceedances over high thresholds. J. Roy. Statist. Soc. Ser. B 52 393–442.
  • de Haan, L. and de Ronde, J. (1998). Sea and wind: Multivariate extremes at work. Extremes 1 7–45.
  • de Haan, L. and Ferreira, A. (2010). Extreme Value Theory: An Introduction. Springer, New York.
  • Easterling, D., Meehl, G., Parmesan, C., Changnon, S., Karl, T. and Mearns, L. (2000). Climate extremes: Observations, modeling, and impacts. Science 289 2068–2074.
  • Eastoe, E. F. and Tawn, J. A. (2009). Modelling non-stationary extremes with application to surface level ozone. J. R. Stat. Soc. Ser. C. Appl. Stat. 58 25–45.
  • Edwards, P. (2010). A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming. MIT Press, Cambridge, MA.
  • Heffernan, J. E. and Resnick, S. I. (2007). Limit laws for random vectors with an extreme component. Ann. Appl. Probab. 17 537–571.
  • Heffernan, J. E. and Tawn, J. A. (2004). A conditional approach for multivariate extreme values. J. R. Stat. Soc. Ser. B. Stat. Methodol. 66 497–546. With discussions and reply by the authors.
  • Jonathan, P. and Ewans, K. (2007). The effect of directionality on extreme wave design criteria. Ocean Eng. 34 1977–1994.
  • Jonathan, P., Ewans, K. and Randell, D. (2014). Non-stationary conditional extremes of northern North Sea storm characteristics. Environmetrics 25 172–188.
  • Kallache, M., Vrac, M., Naveau, P. and Michelangeli, P.-A. (2011). Nonstationary probabilistic downscaling of extreme precipitation. J. Geophys. Res. 116 D05113.
  • Keef, C., Papastathopoulos, I. and Tawn, J. A. (2013). Estimation of the conditional distribution of a multivariate variable given that one of its components is large: Additional constraints for the Heffernan and Tawn model. J. Multivariate Anal. 115 396–404.
  • Kinsman, B. (2012). Wind Waves: Their Generation and Propagation on the Ocean Surface. Dover, New York.
  • Kyselý, J., Picek, J. and Beranová, R. (2010). Estimating extremes in climate change simulations using the peaks-over-threshold method with a non-stationary threshold. Glob. Planet. Change 72 55–68.
  • Ledford, A. W. and Tawn, J. A. (1996). Statistics for near independence in multivariate extreme values. Biometrika 83 169–187.
  • Liu, Y. and Tawn, J. A. (2014). Self-consistent estimation of conditional multivariate extreme value distributions. J. Multivariate Anal. 127 19–35.
  • Lofsted, R. (2014). Cases in Climate Change Policy: Political Reality in the European Union. Routledge, London.
  • Lugrin, T., Davison, A. C. and Tawn, J. A. (2016). Bayesian uncertainty management in temporal dependence of extremes. Extremes 19 491–515.
  • Maraun, D., Widmann, M., Gutierrez, J., Kotlarski, S., Chandler, R., Hertig, E., Wibig, J., Huth, R. and Wilcke, R. (2015). Value: A framework to validate downscaling approaches for climate change studies. Earth’s Future 3 1–14.
  • Michelangeli, P.-A., Vrac, M. and Loukos, H. (2009). Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geophys. Res. Lett. 36 1–6.
  • Nelsen, R. B. (2006). An Introduction to Copulas, 2nd ed. Springer, New York.
  • Northrop, P. J. and Jonathan, P. (2011). Threshold modelling of spatially dependent non-stationary extremes with application to hurricane-induced wave heights. Environmetrics 22 799–809.
  • Reistad, M., Breivik, Ø., Haakenstad, H., Aarnes, O., Furevik, B. and Bidlot, J. (2011). A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea. J. Geophys. Res. 116. C05019.
  • Robinson, P. M. and Tawn, J. (1997). Statistics for extreme sea currents. J. R. Stat. Soc. Ser. C. Appl. Stat. 46 183–205.
  • Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman & Hall, London.
  • Smith, R. L. and Weissman, I. (1994). Estimating the extremal index. J. Roy. Statist. Soc. Ser. B 56 515–528.
  • Solomon, S., Quin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M. and Miller, H., eds. (2007). Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge Univ. Press, Cambridge.
  • Towe, R. (2015). Modelling the Extreme Wave Climate of the North Sea. Ph.D. thesis, Univ. Lancaster, Lancaster.
  • Towe, R., Eastoe, E., Tawn, J., Wu, Y. and Jonathan, P. (2013). The extremal dependence of storm severity, wind speed and surface level pressure in the northern North Sea. In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, New York.
  • Vanem, E., Huseby, A. and Natvig, B. (2012). A Bayesian hierarchical spatio-temporal model for significant wave height in the North Atlantic. Stoch. Environ. Res. Risk Assess. 26 609–632.
  • von Mises, R. (1964). Mathematical Theory of Probability and Statistics. Academic Press, New York.
  • Wadsworth, J. L. and Tawn, J. A. (2012). Dependence modelling for spatial extremes. Biometrika 99 253–272.
  • Wang, J. and Zhang, X. (2010). Downscaling and projection of winter extreme daily precipitation over North America. J. Climate 21 923–937.
  • Wilby, R., Charles, S., Zorita, E., Timbal, B., Whetton, P. and Mearns, L. (2004). Guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting material of the Intergovernmental Panel on Climate Change.