The Annals of Applied Statistics

Point process models for spatio-temporal distance sampling data from a large-scale survey of blue whales

Yuan Yuan, Fabian E. Bachl, Finn Lindgren, David L. Borchers, Janine B. Illian, Stephen T. Buckland, Håvard Rue, and Tim Gerrodette

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Distance sampling is a widely used method for estimating wildlife population abundance. The fact that conventional distance sampling methods are partly design-based constrains the spatial resolution at which animal density can be estimated using these methods. Estimates are usually obtained at survey stratum level. For an endangered species such as the blue whale, it is desirable to estimate density and abundance at a finer spatial scale than stratum. Temporal variation in the spatial structure is also important. We formulate the process generating distance sampling data as a thinned spatial point process and propose model-based inference using a spatial log-Gaussian Cox process. The method adopts a flexible stochastic partial differential equation (SPDE) approach to model spatial structure in density that is not accounted for by explanatory variables, and integrated nested Laplace approximation (INLA) for Bayesian inference. It allows simultaneous fitting of detection and density models and permits prediction of density at an arbitrarily fine scale. We estimate blue whale density in the Eastern Tropical Pacific Ocean from thirteen shipboard surveys conducted over 22 years. We find that higher blue whale density is associated with colder sea surface temperatures in space, and although there is some positive association between density and mean annual temperature, our estimates are consistent with no trend in density across years. Our analysis also indicates that there is substantial spatially structured variation in density that is not explained by available covariates.

Article information

Ann. Appl. Stat. Volume 11, Number 4 (2017), 2270-2297.

Received: September 2016
Revised: June 2017
First available in Project Euclid: 28 December 2017

Permanent link to this document

Digital Object Identifier

Distance sampling spatio-temporal modeling stochastic partial differential equations INLA spatial point process


Yuan, Yuan; Bachl, Fabian E.; Lindgren, Finn; Borchers, David L.; Illian, Janine B.; Buckland, Stephen T.; Rue, Håvard; Gerrodette, Tim. Point process models for spatio-temporal distance sampling data from a large-scale survey of blue whales. Ann. Appl. Stat. 11 (2017), no. 4, 2270--2297. doi:10.1214/17-AOAS1078.

Export citation


  • Bailey, H. B., Mate, B. R., Palacios, D. M., Irvine, L., Bograd, S. J. and Costa, D. P. (2009). Behavioural estimation of blue whale movements in the Northeast Pacific from state–space model analysis of satellite tracks. Endanger. Species Res. 10 93–106.
  • Borchers, D. L. and Efford, M. G. (2008). Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64 377–385.
  • Borchers, D. L., Buckland, S. T., Goedhart, P. W., Clarke, E. D. and Hedley, S. L. (1998). Horvitz–Thompson estimators for double-platform line transect surveys. Biometrics 54 1221–1237.
  • Brenner, S. C. and Scott, L. R. (2008). The Mathematical Theory of Finite Element Methods, 3rd ed. Texts in Applied Mathematics 15. Springer, New York.
  • Buckland, S. T., Oedekoven, C. S. and Borchers, D. L. (2016). Model-based distance sampling. J. Agric. Biol. Environ. Stat. 21 58–75.
  • Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L. and Thomas, L. (2001). Introduction to Distance Sampling: Estimating Abundance of Biological Populations, 1st ed. Oxford Univ. Press, Oxford.
  • Buckland, S. T., Rexstad, E. A., Marques, C. S. and Oedekoven, C. S. (2015). Distance Sampling: Methods and Applications. Springer, Berlin.
  • Cameletti, M., Lindgren, F., Simpson, D. and Rue, H. (2013). Spatio-temporal modeling of particulate matter concentration through the SPDE approach. AStA Adv. Stat. Anal. 97 109–131.
  • Conn, P. B., Laake, J. L. and Johnson, D. S. (2012). A hierarchical modeling framework for multiple observer transect surveys. PLoS ONE 7 e42294.
  • Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley, New York.
  • Diggle, P. J. (2003). Statistical Analysis of Spatial Point Patterns, 2nd ed. Hodder Arnold, London.
  • Dorazio, R. M. (2012). Predicting the geographic distribution of a species from presence-only data subject to detection errors. Biometrics 68 1303–1312.
  • Farin, G. E. (2002). Curves and Surfaces for CAGD: A Practical Guide, 5th ed. Academic Press, New York.
  • Forney, K. A., Ferguson, M. C., Becker, E. A., Fiedler, P. C., Redfern, J. V., Barlow, J., Vilchis, I. L. and Ballance, L. T. (2012). Habitat-based spatial models of cetacean density in the eastern Pacific Ocean. Endanger. Species Res. 16 113–133.
  • Gerrodette, T. and Forcada, J. (2005). Non-recovery of two spotted and spinner dolphin populations in the eastern tropical Pacific Ocean. Mar. Ecol. Prog. Ser. 291 1–21.
  • Gerrodette, T., Perryman, W. and Barlow, J. (2002). Calibrating group size estimates of dolphins in the Eastern Tropical Pacific Ocean. Administrative Report LJ-02-08. 20 p.
  • Hanks, E. M., Schliep, E. M., Hooten, M. B. and Hoeting, J. A. (2015). Restricted spatial regression in practice: Geostatistical models, confounding, and robustness under model misspecification. Environmetrics 26 243–254.
  • Hayes, R. J. and Buckland, S. T. (1983). Radial-distance models for the line-transect method. Biometrics 39(1) 29–42.
  • Hedley, S. L. and Buckland, S. T. (2004). Spatial models for line transect sampling. J. Agric. Biol. Environ. Stat. 9 181–199.
  • Hedley, S. L., Buckland, S. T. and Borchers, D. L. (2004). Spatial distance sampling models. In Advanced Distance Sampling (S. T. Buckland, D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas, eds.) 48–70. Oxford Univ. Press, Oxford.
  • Hefley, T. J. and Hooten, M. B. (2016). Hierarchical species distribution models. Curr. Landsc. Ecol. Rep. 1 87–97.
  • Högmander, H. (1991). A random field approach to transect counts of wildlife populations. Biom. J. 33 1013–1023.
  • Högmander, H. (1995). Methods of Spatial Statistics in Monitoring Wildlife Populations. Univ. Jyväskylä, Jyväskylä.
  • Illian, J. B., Sørbye, S. H. and Rue, H. (2012). A toolbox for fitting complex spatial point process models using integrated nested Laplace approximation (INLA). Ann. Appl. Stat. 6 1499–1530.
  • Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008). Statistical Analysis and Modelling of Spatial Point Patterns. Wiley, Chichester.
  • Johnson, D. S., Hooten, M. B. and Kuhn, C. E. (2013). Estimating animal resource selection from telemetry data using point process models. J. Anim. Ecol. 83 1155–1164.
  • Johnson, D. S., Laake, J. L. and Ver Hoef, J. M. (2010). A model-based approach for making ecological inference from distance sampling data. Biometrics 66 310–318.
  • Johnson, D. S., Laake, J. L. and Ver Hoef, J. M. (2014). DSpat: Spatial modelling for distance sampling data. R package version 0.1.6.
  • Kinzey, D., Olson, P. and Gerrodette, T. (2000). Marine Mammal data collection procedures on research ship line-transect surveys by the Southwest Fisheries Science Center. Technical Report National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Fisheries Science Center.
  • Kreft, I. G. G., de Leeuw, J. and Aiken, L. S. (1995). The effect of different forms of centering in hierarchicallinear models. Multivar. Behav. Res. 30 1–21.
  • Lindgren, F. and Rue, H. (2015). Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63(19).
  • Lindgren, F., Rue, H. and Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B. Stat. Methodol. 73 423–498.
  • Miller, D. L., Burt, M. L., Rexstad, E. A. and Thomas, L. (2013). Spatial models for distance sampling data: Recent developments and future directions. Methods Ecol. Evol. 4 1001–1010.
  • Miller, D. L., Rexstad, E. A., Burt, M. L., Bravington, M. V. and Hedley, S. L. (2014). dsm: Density surface modelling of distance sampling data. R package version 2.2.5.
  • Møller, J., Syversveen, A. R. and Waagepetersen, R. P. (1998). Log Gaussian Cox processes. Scand. J. Stat. 25 451–482.
  • Møller, J. and Waagepetersen, R. P. (2004). Statistical Inference and Simulation for Spatial Point Processes. Monographs on Statistics and Applied Probability 100. Chapman & Hall/CRC, Boca Raton, FL.
  • Møller, J. and Waagepetersen, R. P. (2007). Modern statistics for spatial point processes. Scand. J. Stat. 34 643–684.
  • Moore, J. E. and Barlow, J. (2011). Bayesian state–space model of fin whale abundance trends from a 1991–2008 time series of line-transect surveys in the California Current. J. Appl. Ecol. 48 1195–1205.
  • Niemi, A. and Fernández, C. (2010). Bayesian spatial point process modeling of line transect data. J. Agric. Biol. Environ. Stat. 15 327–345.
  • Oedekoven, C. S., Laake, J. L. and Skaug, H. J. (2015). Distance sampling with a random scale detection function. Environ. Ecol. Stat. 22 725–737.
  • Oedekoven, C. S., Buckland, S. T., Mackenzie, M. L., Evans, K. O. and Burger, L. W. (2013). Improving distance sampling: Accounting for covariates and non-independency between sampled sites. J. Appl. Ecol. 50 786–793.
  • Oedekoven, C. S., Buckland, S. T., Mackenzie, M. L., King, R., Evans, K. O. and Burger, L. W. Jr. (2014). Bayesian methods for hierarchical distance sampling models. J. Agric. Biol. Environ. Stat. 19 219–239.
  • Pardo, M. A., Gerrodette, T., Beier, E., Gendron, D., Forney, K. A., Chivers, S. J., Barlow, J. and Palacios, D. M. (2015). Inferring cetacean population densities from the absolute dynamic topography of the ocean in a hierarchical Bayesian framework. PLoS ONE 10 e0120727. DOI:doi:10.1371/journal.pone.0120727.
  • Ramsay, J. O. (1988). Monotone regression splines in action. Statist. Sci. 3 425–441.
  • Royle, J. A., Dawson, D. K. and Bates, S. (2004). Modeling abundance effects in distance sampling. Ecology 85 1591–1597.
  • Royle, J. A. and Dorazio, R. M. (2008). Hierarchical Modelling and Inference in Ecology. Academic Press, London, UK.
  • Royle, J. A. and Young, K. V. (2008). A hierarchical model for spatial capture–recapture data. Ecology 89 2281–2289.
  • Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications. Monographs on Statistics and Applied Probability 104. Chapman & Hall/CRC, Boca Raton, FL.
  • Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B. Stat. Methodol. 71 319–392.
  • Schmidt, J. H., Rattenbury, K. L., Lawler, J. P. and Maccluskie, M. C. (2012). Using distance sampling and hierarchical models to improve estimates of Dall’s sheep abundance. J. Wildl. Manag. 76(2) 317–327.
  • Simpson, D., Lindgren, F. and Rue, H. (2012). Think continuous: Markovian Gaussian models in spatial statistics. Spat. Stat. 1 16–29.
  • Simpson, D., Illian, J. B., Lindgren, F., Sørbye, S. H. and Rue, H. (2016). Going off grid: Computationally efficient inference for log-Gaussian Cox processes. Biometrika 103 49–70.
  • Stoyan, D. (1982). A remark on the line transect method. Biom. J. 24 191–195.
  • Stoyan, D. and Grabarnik, P. (1991). Second-order characteristics for stochastic structures connected with Gibbs point processes. Math. Nachr. 151 95–100.
  • van Lieshout, M. N. M. (2000). Markov Point Processes and Their Applications. Imperial College Press, London.
  • Waagepetersen, R. and Schweder, T. (2006). Likelihood-based inference for clustered line transect data. J. Agric. Biol. Environ. Stat. 11(3) 264–279.
  • Wiegand, T. and Moloney, K. A. (2014). Handbook of Spatial Point-Pattern Analysis in Ecology. CRC Press, Boca Raton, FL.
  • Williams, R., Hedley, S. L., Branch, T. A., Bravington, M. V., Zerbini, A. N. and Findlay, K. P. (2011). Chilean blue whales as a case study to illustrate methods to estimate abundance and evaluate conservation status of rare species. Conserv. Biol. 25 526–535.
  • Wolter, K. and Timlin, M. S. (2011). El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol. 31 1074–1087.
  • Wood, S. N. (2006). Generalized Additive Models: An Introduction with $R$. Chapman & Hall/CRC, Boca Raton, FL.
  • Yuan, Y., Bachl, F. E., Lindgren, F., Borchers, D. L., Illian, J. B., Buckland, S. T., Rue, H. and Gerrodette, T. (2017). Supplement to “Point process models for spatio-temporal distance sampling data from a large-scale survey of blue whales.” DOI:10.1214/17-AOAS1078SUPP.

Supplemental materials

  • Theory and analysis details. Supplement A gives theory for Sections 3.3 and 4.2. Supplement B gives details for the analysis in Section 5.