The Annals of Applied Statistics

Multivariate spatiotemporal modeling of age-specific stroke mortality

Harrison Quick, Lance A. Waller, and Michele Casper

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Geographic patterns in stroke mortality have been studied as far back as the 1960s when a region of the southeastern United States became known as the “stroke belt” due to its unusually high rates. While stroke mortality rates are known to increase exponentially with age, an investigation of spatiotemporal trends by age group at the county level is daunting due to the preponderance of small population sizes and/or few stroke events by age group. In this paper, we implement a multivariate space–time conditional autoregressive model to investigate age-specific trends in county-level stroke mortality rates from 1973 to 2013. In addition to reinforcing existing claims in the literature, this work reveals that geographic disparities in the reduction of stroke mortality rates vary by age. More importantly, this work indicates that the geographic disparity between the “stroke belt” and the rest of the nation is not only persisting, but may in fact be worsening.

Article information

Source
Ann. Appl. Stat. Volume 11, Number 4 (2017), 2165-2177.

Dates
Received: August 2016
Revised: June 2017
First available in Project Euclid: 28 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1514430281

Digital Object Identifier
doi:10.1214/17-AOAS1068

Keywords
Age disparities in health Bayesian methods geographic disparities in health nonseparable models small area analysis

Citation

Quick, Harrison; Waller, Lance A.; Casper, Michele. Multivariate spatiotemporal modeling of age-specific stroke mortality. Ann. Appl. Stat. 11 (2017), no. 4, 2165--2177. doi:10.1214/17-AOAS1068. https://projecteuclid.org/euclid.aoas/1514430281


Export citation

References

  • Anderson, R. N., Miniño, A. M., Hoyert, D. L. and Rosenberg, H. M. (2001). Comparability of cause of death between ICD-9 and ICD-10: Preliminary estimates. Natl. Vital Stat. Rep. 49 1–32.
  • Bernardinelli, L., Clayton, D. and Montomoli, C. (1995). Bayesian estimates of disease maps: How important are priors? Stat. Med. 14 2411–2431.
  • Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J. Roy. Statist. Soc. Ser. B 36 192–236.
  • Besag, J. and Higdon, D. (1999). Bayesian analysis of agricultural field experiments. J. R. Stat. Soc. Ser. B. Stat. Methodol. 61 691–746.
  • Besag, J., York, J. and Mollié, A. (1991). Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Statist. Math. 43 1–59.
  • Besag, J., Green, P., Higdon, D. and Mengersen, K. (1995). Bayesian computation and stochastic systems. Statist. Sci. 10 3–66.
  • Borhani, N. O. (1965). Changes and geographic distribution of mortality from cerebrovascular disease. Am. J. Publ. Health 55 673–681.
  • Botella-Rocamora, P., Martinez-Beneito, M. A. and Banerjee, S. (2015). A unifying modeling framework for highly multivariate disease mapping. Stat. Med. 34 1548–1559.
  • Casper, M., Anda, R. F., Knowles, M., Pollard, R. A. and Wing, S. (1995). The shifting stroke belt: Changes in the geographic pattern of stroke mortality in the United States. Stroke 26 755–760.
  • CDC (2003). CDC/ATSDR Policy on Releasing and Sharing Data. Manual; Guide CDC-02. Available at http://www.cdc.gov/maso/Policy/ReleasingData.pdf. Accessed June 30, 2015.
  • El-Saed, A., Kuller, L. H., Newman, A. B., Lopez, O., Costantino, J., McTigue, K., Cushman, M. and Kronmal, R. (2006). Geographic variations in stroke incidence and mortality among older populations in four US communities. Stroke 37 1975–1979.
  • Ergin, A., Muntner, P., Sherwin, R. and He, J. (2004). Secular trends in cardiovascular disease mortality, incidence, and case fatality rates in adults in the United States. Am. J. Med. 117 219–227.
  • Gelfand, A. E. and Vounatsou, P. (2003). Proper multivariate conditional autoregressive models for spatial data analysis. Biostat. 4 11–25.
  • Gillum, R. F., Kwagyan, J. and Obiesesan, T. O. (2011). Ethnic and geographic variation in stroke mortality trends. Stroke 42 3294–3296.
  • Howard, V. J. (2013). Reasons underlying racial differences in stroke incidence and mortality. Stroke 44 S126–S128.
  • Howard, G., Howard, V. J., Katholi, C., Oli, M. K., Huston, S. and Asplund, K. (2001). Decline in US stroke mortality: An analysis of temporal patterns by sex, race, and geogrpahic region. Stroke 32 2213–2218.
  • Klebba, A. J. and Scott, J. H. (1980). Estimates of selected comparability ratios based on dual coding of 1976 death certificates by the eighth and ninth revisions of the International Classification of Diseases. National Vital Statistics Reports 28.
  • Knorr-Held, L. (2000). Bayesian modelling of inseparable space–time variation in disease risk. Stat. Med. 19 2555–2567.
  • Knorr-Held, L. and Besag, J. (1998). Modelling risk from a disease in time and space. Stat. Med. 17 2045–2060.
  • Knorr-Held, L. and Rue, H. (2002). On block updating in Markov random field models for disease mapping. Scand. J. Stat. 29 597–614.
  • Lisabeth, L. D., Diez Roux, A. V., Escobar, J. D., Smith, M. A. and Morgenstern, L. B. (2006). Neighborhood environment and risk of ischemic stroke. Am. J. Epidemiol. 165 279–287.
  • Martinez-Beneito, M. A. (2013). A general modelling framework for multivariate disease mapping. Biometrika 100 539–553.
  • Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika 37 17–23.
  • NCHS (2013). Bridged-race population estimates: United States July 1st resident population by state, county, age, sex, bridged-race, and Hispanic origin. Available at http://www.cdc.gov/NCHS/nvss/bridged_race.htm. Accessed June 30, 2015.
  • Quick, H., Carlin, B. P. and Banerjee, S. (2015). Heteroscedastic conditional auto-regression models for areally referenced temporal processes for analysing California asthma hospitalization data. J. R. Stat. Soc. Ser. C. Appl. Stat. 64 799–813.
  • Quick, H., Waller, L. A. and Casper, M. (2017a). A multivariate space–time model for analyzing county-level heart disease death rates by race and sex. J. Roy. Statist. Soc. Ser. C. DOI:10.1111/rssc.12215.
  • Quick, H., Waller, L. A. and Casper, M. (2017b). Supplement to “Multivariate spatiotemporal modeling of age-specific stroke mortality.” DOI:10.1214/17-AOAS1068SUPP.
  • Raghunathan, T. E., Reiter, J. P. and Rubin, D. B. (2003). Multiple imputation for statistical disclosure limitation. J. Off. Stat. 19 1–16.
  • Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications. Monographs on Statistics and Applied Probability 104. Chapman & Hall/CRC, Boca Raton, FL.
  • Schieb, L. J., Mobley, L. R., George, M. and Casper, M. (2013). Tracking stroke hospitalization clusters over time and associations with county-level socioeconomic and healthcare characteristics. Stroke 44 146–152.
  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B. Stat. Methodol. 64 583–639.
  • Tassone, E. C., Waller, L. A. and Casper, M. L. (2009). Small-area racial disparity in stroke mortality. Epidemiology 20 234–241.
  • Waller, L. A., Carlin, B. P., Xia, H. and Gelfand, A. E. (1997). Hierarchical spatio-temporal mapping of disease rates. J. Amer. Statist. Assoc. 92 607–617.
  • Xu, J., Murphy, S. L., Kochanek, K. D. and Bastian, B. A. (2016). Deaths: Final data for 2013. Natl. Vital Stat. Rep. 64 1–119.

Supplemental materials

  • Supplement to “Multivariate spatiotemporal modeling of age-specific stroke mortality”. Appendix A contains the details of our Markov chain Monte Carlo (MCMC) algorithm and a description of the preprocessing smoothing approach used on our two covariates. Appendix B contains a supplemental discussion (and additional figures) related to the analysis of the stroke mortality data.