The Annals of Applied Statistics

Discussion of “Coauthorship and citation networks for statisticians”

Mladen Kolar and Matt Taddy

Full-text: Open access

Article information

Source
Ann. Appl. Stat. Volume 10, Number 4 (2016), 1835-1841.

Dates
Received: August 2016
First available in Project Euclid: 5 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1483606840

Digital Object Identifier
doi:10.1214/16-AOAS896D

Zentralblatt MATH identifier
06688757

Citation

Kolar, Mladen; Taddy, Matt. Discussion of “Coauthorship and citation networks for statisticians”. Ann. Appl. Stat. 10 (2016), no. 4, 1835--1841. doi:10.1214/16-AOAS896D. https://projecteuclid.org/euclid.aoas/1483606840


Export citation

References

  • Bacallado, S. (2011). Bayesian analysis of variable-order, reversible Markov chains. Ann. Statist. 39 838–864.
  • Bickel, P. J. and Levina, E. (2008). Covariance regularization by thresholding. Ann. Statist. 36 2577–2604.
  • Blei, D. M., Ng, A. Y. and Jordan, M. I. (2003). Latent Dirichlet allocation. J. Mach. Learn. Res. 3 993–1022.
  • Borgatti, S. P., Carley, K. M. and Krackhardt, D. (2006). On the robustness of centrality measures under conditions of imperfect data. Social Networks 28 124–136.
  • Bunea, F., Tsybakov, A. B. and Wegkamp, M. H. (2007). Aggregation for Gaussian regression. Ann. Statist. 35 1674–1697.
  • Candes, E. and Tao, T. (2007). The Dantzig selector: Statistical estimation when $p$ is much larger than $n$. Ann. Statist. 35 2313–2351.
  • Drton, M. and Perlman, M. D. (2004). Model selection for Gaussian concentration graphs. Biometrika 91 591–602.
  • Drton, M. and Richardson, T. S. (2004). Multimodality of the likelihood in the bivariate seemingly unrelated regressions model. Biometrika 91 383–392.
  • Fan, J. and Li, R. (2004). New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis. J. Amer. Statist. Assoc. 99 710–723.
  • Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space. J. R. Stat. Soc. Ser. B. Stat. Methodol. 70 849–911.
  • Fan, J. and Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32 928–961.
  • Farcomeni, A. (2011). Recapture models under equality constraints for the conditional capture probabilities. Biometrika 98 237–242.
  • Genovese, C. and Wasserman, L. (2004). A stochastic process approach to false discovery control. Ann. Statist. 32 1035–1061.
  • Huang, J., Horowitz, J. L. and Ma, S. (2008). Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann. Statist. 36 587–613.
  • Huang, J. Z., Liu, N., Pourahmadi, M. and Liu, L. (2006). Covariance matrix selection and estimation via penalised normal likelihood. Biometrika 93 85–98.
  • Hunter, D. R. and Li, R. (2005). Variable selection using MM algorithms. Ann. Statist. 33 1617–1642.
  • Johnstone, I. M. and Silverman, B. W. (2004). Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences. Ann. Statist. 32 1594–1649.
  • Koltchinskii, V. (2006). Local Rademacher complexities and oracle inequalities in risk minimization. Ann. Statist. 34 2593–2656.
  • Lee, Y. K., Mammen, E. and Park, B. U. (2010). Backfitting and smooth backfitting for additive quantile models. Ann. Statist. 38 2857–2883.
  • Massam, H., Liu, J. and Dobra, A. (2009). A conjugate prior for discrete hierarchical log-linear models. Ann. Statist. 37 3431–3467.
  • Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436–1462.
  • Roberts, M. E., Stewart, B. M. and Tingley, D. (2014). stm: R package for structural topic models. R package vignette.
  • Roberts, M. E., Stewart, B. M., Tingley, D., Airoldi, E. M. et al. (2013). The structural topic model and applied social science. In Advances in Neural Information Processing Systems Workshop on Topic Models: Computation, Application, and Evaluation.
  • Schick, A. and Wefelmeyer, W. (2004). Estimating invariant laws of linear processes by $U$-statistics. Ann. Statist. 32 603–632.
  • Storey, J. D., Taylor, J. E. and Siegmund, D. (2004). Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach. J. R. Stat. Soc. Ser. B. Stat. Methodol. 66 187–205.
  • Taddy, M. (2012). On estimation and selection for topic models. In Proceedings of the 15th International Conference on Artificial Intelligence and Statistics (AISTATS 2012).
  • Taddy, M. (2015). One-step estimator paths for concave regularization. Available at arXiv:1308.5623.
  • Tan, L. S. L., Chan, A. H. and Zheng, T. (2015). Topic-adjusted visibility metric for scientific articles. Available at arXiv:1502.07190.
  • Zou, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418–1429.
  • Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B. Stat. Methodol. 67 301–320.
  • Zou, H. and Li, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models. Ann. Statist. 36 1509–1533.
  • Zou, H. and Zhang, H. H. (2009). On the adaptive elastic-net with a diverging number of parameters. Ann. Statist. 37 1733–1751.
  • Zuo, Y. and Cui, H. (2005). Depth weighted scatter estimators. Ann. Statist. 33 381–413.

See also

  • Main article: Coauthorship and citation networks for statisticians.