The Annals of Applied Statistics

Assessing the causal effects of financial aids to firms in Tuscany allowing for interference

Bruno Arpino and Alessandra Mattei

Full-text: Open access


We consider policy evaluations when the Stable Unit Treatment Value Assumption (SUTVA) is violated due to the presence of interference among units. We propose to explicitly model interference as a function of units’ characteristics. Our approach is applied to the evaluation of a policy implemented in Tuscany (a region in Italy) on small handicraft firms. Results show that the benefits from the policy are reduced when treated firms are subject to high levels of interference. Moreover, the average causal effect is slightly underestimated when interference is ignored. We stress the importance of considering possible interference among units when evaluating and planning policy interventions.

Article information

Ann. Appl. Stat., Volume 10, Number 3 (2016), 1170-1194.

Received: May 2014
Revised: June 2015
First available in Project Euclid: 28 September 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Interference causal inference policy evaluation potential outcomes Rubin Causal Model SUTVA


Arpino, Bruno; Mattei, Alessandra. Assessing the causal effects of financial aids to firms in Tuscany allowing for interference. Ann. Appl. Stat. 10 (2016), no. 3, 1170--1194. doi:10.1214/15-AOAS902.

Export citation


  • Almus, M. and Czarnitzki, D. (2003). The effects of public R&D subsidies on firms’ innovation activities: The case of Eastern Germany. J. Bus. Econom. Statist. 21 226–236.
  • Anselin, L. (2006). Spatial econometrics. In Palgrave Handbook of Econometrics: Volume 1, Econometric Theory (T. C. Mills and K. Patterson, eds.) 901–941. Palgrave Macmillan, Basingstoke, UK.
  • Aronow, P. M. (2012). A general method for detecting interference between units in randomized experiments. Sociol. Methods Res. 41 3–16.
  • Battistin, E., Gavosto, A. and Rettore, E. (2001). Why do subsidised firms survive longer? An evaluation of a program promoting youth entrepreneurship in Italy. In Econometric Evaluation of Labour Market Policies 153–181. Springer, Berlin.
  • Bhattacharjee, A. and Jensen-Butler, C. (2013). Estimation of the spatial weights matrix under structural constraints. Regional Science and Urban Economics 43 617–634.
  • Bia, M. and Mattei, A. (2012). Assessing the effect of the amount of financial aids to Piedmont firms using the generalized propensity score. Stat. Methods Appl. 21 485–516.
  • Blackwell, M., Iacus, S. M., King, G. and Porro, G. (2009). CEM: Coarsened exact matching in stata. The Stata Journal 9 524–546.
  • Börner, K., Sanyal, S. and Vespignani, A. (2007). Network science. Annual Review of Information Science and Technology 41 537–607.
  • Bramoullé, Y., Djebbari, H. and Fortin, B. (2009). Identification of peer effects through social networks. J. Econometrics 150 41–55.
  • Brock, W. A. and Durlauf, S. N. (2001). Interactions-based models. In Handbook of Econometrics 5. Elsevier, Amsterdam.
  • Bronzini, R. and De Blasio, G. (2006). Evaluating the impact of investment incentives: The case of Italy’s law 488/1992. Journal of Urban Economics 60 327–349.
  • Corrado, L. and Fingleton, B. (2012). Where is the economics in spatial econometrics? Journal of Regional Science 52 210–239.
  • Crépon, B., Duflo, E., Gurgand, M., Rathelot, R. and Zamora, P. (2013). Do labor market policies have displacement effects? Evidence from a clustered randomized experiment. The Quarterly Journal of Economics 128 531–580.
  • De Castris, M. and Pellegrini, G. (2012). Evaluation of spatial effects of capital subsidies in the South of Italy. Regional Studies 46 525–538.
  • Dehejia, R. H. and Wahba, S. (1999). Causal effects in non-experimental studies: Re-evaluating the evaluation of training programs. J. Amer. Statist. Assoc. 94 10053–1062.
  • Dei Ottati, G. (1994). Cooperation and competition in the industrial district as an organization model. European Planning Studies 2 463–483.
  • Doreian, P. (1996). When the data points are not independent. In Developments in Data Analysis: Proceedings of the International Conference on Statistical Data Analysis and Data Collection, Bled, Slovenia, September 19-21, 1994 (A. Ferligoj and A. Kramberger, eds.) 27–46. FDV, Fakulteta za družbene vede, Univerza v Ljubljani. Slovenia.
  • Duch, N., Montolio, D. and Mediavilla, M. (2009). Evaluating the impact of public subsidies on a firm’s performance: A two-stage quasi-experimental approach. Investigaciones Regionales 16 143–165.
  • Eberhardt, M., Helmers, C. and Strauss, H. (2013). Do spillovers matter when estimating private returns to R&D? The Review of Economics and Statistics 95 436–448.
  • Gleditsch, K. S., Ward, M. D. and Kristian, S. (2007). An introduction to spatial regression models in the social sciences. Technical report, Duke Univ., Durham, NC.
  • Greiner, D. J. and Rubin, D. B. (2011). Causal effects of perceived immutable characteristics. The Review of Economics and Statistics 93 775–785.
  • Halleck Vega, S. and Elhorst, J. P. (2015). The SLX model. Journal of Regional Science 55 339–363.
  • Harris, R., Moffat, J. and Kravtsova, V. (2011). In search of “W”. Spatial Economic Analysis 6 249–270.
  • Hirano, K. and Imbens, W. G. (2004). The propensity score with continuous treatments. In Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives (A. Gelman and X. L. Meng, eds.) 226164 73–84. Wiley, Hoboken, NJ.
  • Ho, D. E., Imai, K., King, G. and Stuart, E. A. (2007). Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Analysis 15 199–236.
  • Holland, P. W. (1986). Statistics and causal inference. J. Amer. Statist. Assoc. 81 945–970.
  • Hong, G. and Raudenbush, S. W. (2006). Evaluating kindergarten retention policy: A case study of causal inference for multilevel observational data. J. Amer. Statist. Assoc. 101 901–910.
  • Hudgens, M. G. and Halloran, M. E. (2008). Toward causal inference with interference. J. Amer. Statist. Assoc. 103 832–842.
  • Iacus, S. M., King, G. and Porro, G. (2012). Causal inference without balance checking: Coarsened exact matching. Political Analysis 20 1–24.
  • Imai, K. and van Dyk, D. A. (2004). Causal inference with general treatment regimes: Generalizing the propensity score. J. Amer. Statist. Assoc. 99 854–866.
  • Imbens, G. W. (2000). The role of the propensity score in estimating dose-response functions. Biometrika 87 706–710.
  • Imbens, G. W. (2004). Nonparametric estimation of average treatment effetcs under exogeneity: A review. The Review of Economics and Statistics 86 4–29.
  • Kao, E., Toulis, R., Airoldi, E. and Rubin, B. D. (2012). Causal estimation of peer influence effects. In NIPS 2012 Workshop ‘Social Network and Social Media Analysis: Methods, Models and Applications´. Stanford Network Analysis Project, Stanford University, Lake Tahoe, Nevada.
  • Klette, T., Møen, J. and Griliches, Z. (2000). Do subsidies to commercial R&D reduce market failures? Microeconometric evaluation studies. Research Policy 29 471–495.
  • Lechner, M. (2001). Identification and estimation of causal effects of multiple treatments under the conditional independence assumption. In Econometric Evaluation of Labour Market Policies (M. Lechner and F. Pfeiffer, eds.). ZEW Economic Studies 13 43–58. Physica-Verlag, Heidelberg.
  • Mattei, A. and Mauro, V. (2007). Valutazione di politiche per le imprese artigiane. Research report. IRPET—Istituto Regionale Programmazione Economica della Toscana.
  • Mealli, F. and Rubin, D. B. (2015). Clarifying missing at random and related definitions, and implications when coupled with exchangeability. Biometrika 102 995–1000.
  • Pellegrini, G. and Carlucci, C. (2003). Gli effetti della legge 488/92: Una valutazione dell’impatto occupazionale sulle imprese agevolate. Rivista Italiana degli Economisti 8 267–286.
  • Rosenbaum, P. R. (2007). Interference between units in randomized experiments. J. Amer. Statist. Assoc. 102 191–200.
  • Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70 41–55.
  • Rosenbaum, P. R. and Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Amer. Statist. 3 33–38.
  • Rubin, D. B. (1976). Inference and missing data. Biometrika 63 581–592.
  • Rubin, D. B. (1980). Discussion of “Randomization analysis of experimental data: the Fisher randomization test” by D. Basu. J. Amer. Statist. Assoc. 75 591–593.
  • Rubin, D. B. (1990). Comment on J. Neyman and causal inference in experiments and observational studies: “On the application of probability theory to agricultural experiments. Essay on principles. Section 9” [Ann. Agric. Sci. 10 (1923), 1–51]. Statist. Sci. 5 472–480.
  • Samii, C. and Aronow, P. (2013). Estimating average causal effects under general interference. Technical report. Available at
  • Sobel, M. E. (2006). What do randomized studies of housing mobility demonstrate?: Causal inference in the face of interference. J. Amer. Statist. Assoc. 101 1398–1407.
  • Stuart, E. A. (2007). Estimating causal effects using school-level data sets. Educational Researcher 36 187–198.
  • Takalo, T., Tanayama, T. and Toivanen, O. (2013). Estimating the benefits of targeted R&D subsidies. The Review of Economics and Statistics 95 255–272.
  • Tchetgen Tchetgen, E. J. and VanderWeele, T. J. (2012). On causal inference in the presence of interference. Stat. Methods Med. Res. 21 55–75.
  • Verbitsky, N. and Raudenbush, S. W. (2004). Causal inference in spatial settings. In Preceedings of the Social Statistics Section 2369–2374. Amer. Statist. Assoc., Alexandria, VA.
  • Wooldridge, J. M. and Imbens, G. W. (2009). Recent developments in the econometrics of program evaluation. Journal of Economic Literature 47 5–86.