The Annals of Applied Statistics

Extended Structure Preserving Estimation (ESPREE) for updating small area estimates of poverty

Marissa Isidro, Stephen Haslett, and Geoff Jones

Full-text: Open access

Abstract

Small area estimation techniques are now routinely used to generate local-level poverty estimates for aid allocation and poverty monitoring in developing countries. However, the widely implemented World Bank (WB) or Elbers, Lanjouw and Lanjouw [Econometrica 71 (2003) 355–364] (ELL) method can only be used when a survey and census are conducted at approximately the same time. The empirical best prediction (EBP) method of Molina and Rao [Canad. J. Statist. 38 (2010) 369–385] also requires a new census for updating. Hence, if small area estimation methods that use both survey and census unit record data are required, and the survey is rerun some years after the census, how to update small area estimates becomes an important issue. In this paper, we propose an intercensal updating method for local-level poverty estimates with estimated standard errors which we call Extended Structure PREserving Estimation (ESPREE). This method is a new extension of classical Structure PREserving Estimation (SPREE). We test our approach by applying it to inter-censal municipal-level poverty estimation and carrying out a validation exercise in the Philippines, comparing the estimates generated with an alternative ELL or EBP updating method due to Lanjouw and van der Wiede [Determining changes in welfare distributions at the micro-level: Updating poverty maps. (2006) Powerpoint presentation at the NSCB Workshop for the NSCB/World Bank Intercensal Updating Project] which uses time-invariant variables. The results show that the ESPREE estimates are preferable, generally being unbiased and concurring well with local experts’ opinion on poverty levels at the time of the updated survey.

Article information

Source
Ann. Appl. Stat., Volume 10, Number 1 (2016), 451-476.

Dates
Received: May 2015
Revised: November 2015
First available in Project Euclid: 25 March 2016

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1458909923

Digital Object Identifier
doi:10.1214/15-AOAS900

Mathematical Reviews number (MathSciNet)
MR3480503

Zentralblatt MATH identifier
1358.62113

Keywords
Small area models SPREE poverty mapping intercensal updating

Citation

Isidro, Marissa; Haslett, Stephen; Jones, Geoff. Extended Structure Preserving Estimation (ESPREE) for updating small area estimates of poverty. Ann. Appl. Stat. 10 (2016), no. 1, 451--476. doi:10.1214/15-AOAS900. https://projecteuclid.org/euclid.aoas/1458909923


Export citation

References

  • Agresti, A. (2002). Categorical Data Analysis, 2nd ed. Wiley, New York.
  • Bell, W., Basel, W., Cruse, C., Dalzell, L., Maples, J., O’Hara, B. and Powers, D. (2007). Use of acs data to produce saipe model-based estimates of poverty for counties. Available at http://www.census.gov/did/www/saipe/publications/files/report.pdf.
  • Brown, G., Chambers, R., Heady, P. and Heasman, D. (2001). Evaluation of small area estimation methods—an application to unemployment estimates from the UK LFS. In Proceedings of Statistics Canada Symposium. Hull, Quebec. Available at https://www.researchgate.net/publication/237775200_Evaluation_of_small_area_estimation_methods_-_An_application_to_unemployment_estimates_from_the_UK_LFS.
  • Christiaensen, L., Lanjouw, P., Luoto, J. and Stifel, D. (2010). The reliability of small area estimation prediction methods to track poverty. Working paper No. 2010/99, United Nations University/World Institute for Development Economics Research (UNU/WIDER), 2010.
  • Elbers, C., Lanjouw, J. and Lanjouw, P. (2003). Micro-level estimation of poverty and inequality. Econometrica 71 355–364.
  • Foster, J., Greer, J. and Thorbeck, E. (1984). A class of decomposable poverty measures. Econometrica 52 761–766.
  • Ghosh, M. and Rao, J. N. K. (1994). Small area estimation: An appraisal. Statist. Sci. 9 55–93.
  • Gonzalez, M. E. (1973). Use and evaluation of synthetic estimators. In Proceedings of the Social Statistics Section, American Statistical Association, Joint Statistical Meetings 33–36. American Statistical Association, New York.
  • Gonzalez, M. E. and Waksberg, J. (1973). Estimation of the error of synthetic estimates. Presented at the First Meeting of the International Association of Survey Statisticians. Vienna, Austria; US Department of Commerce, Social and Economic Statistics, Bureau of Census, Washington, DC.
  • Haslett, S. (2013). Small area estimation of poverty using the ELL/PovMap method, and its alternatives. In Poverty and Social Exclusion: New Methods of Analysis (G. Betti and A. Lemmi, eds.). Routledge, London.
  • Haslett, S. (2016). Small area estimation using both survey and census unit record data: Links, alternatives, and the central roles of regression and contextual variables. In Analysis of Poverty Data by Small Area Estimation (M. Pratesi, eds.). Wiley, New York.
  • Haslett, S., Green, A. and Zingel, C. (1998). Small area estimation given regular updates of census auxiliary variables. In Proceedings of the New Techniques and Technologies for Statistics Conference. Sorrento, Italy.
  • Haslett, S. J., Isidro, M. C. and Jones, G. (2010). Comparison of regression techniques in the context of small area estimation of poverty. Survey Methodlogy 36 157–170.
  • Haslett, S. J. and Jones, G. (2005). Local estimation of poverty in the Philippines. Philippine National Statistics Co-ordination Board/World Bank report. Available at http:// siteresources.worldbank.org/INTPGI/Resources/342674-1092157888460/Local_Estimation_of_ Poverty_Philippines.pdf.
  • Haslett, S. J. and Jones, G. (2010). Small-area estimation of poverty: The aid industry standard and its alternatives. Aust. N. Z. J. Stat. 52 341–362.
  • Haslett, S. J., Jones, G. and Sefton, A. (2013). Small-area estimation of poverty and malnutrition in Cambodia. National Institute of Statistics, Ministry of Planning, Royal Government of Cambodia and the United Nations World Food Programme, Cambodia. Available at http://www.wfp.org/content/cambodia-small-area-estimation-poverty-and-malnutrition-april-2013.
  • Hawala, S. and Lahiri, P. (2012). Hierarchical bayes estimation of poverty rates. Available at http://www.census.gov/did/www/saipe/publications/conference.html.
  • Hoogeveen, J., Emwanu, T. and Okwi, P. (2006). Updating poverty maps with panel data. World Dev. 34 2075–2088.
  • Inglese, F., Russo, A. and Russo, M. (2008). Different approaches for evaluation precision small area model-based estimators. In Proceedings of Q2008 European Conference on Quality in Official Statistics. Rome. Available at http://q2008.istat.it/sessions/paper/37Inglese.pdf.
  • Isidro, M. C. (2009). Validation study for updated poverty estimates in the Philippines. A report submitted to the New Zealand Postgraduate Study Abroad Awards.
  • Isidro, M. C. (2010). Intercensal updating of small area estimates. Unpublished Ph.D. thesis, Massey Univ., New Zealand.
  • Jitsuchon, S. and Lanjouw, P. (2005). Updating poverty maps: Emerging experience with available methods and data from Thailand. Preprint.
  • Lanjouw, P. and van der Wiede, R. (2006). Determining changes in welfare distributions at the micro-level: Updating poverty maps. Powerpoint presentation at the NSCB Workshop for the NSCB/World Bank Intercensal Updating Project.
  • Lumley, T. (2014). Survey: Analysis of complex survey samples. R package Version 3.30.
  • Lumley, T. and Scott, A. (2015). AIC and BIC for modeling with complex survey data, Version 3.30, DOI:10.1093/jssam/smu021.
  • Marker, D. (1999). Organization of small area estimators using a generalized linear regression framework. J. Off. Stat. 15 1–24.
  • Molina, I., Nandram, B. and Rao, J. N. K. (2014). Small area estimation of general parameters with application to poverty indicators: A hierarchical Bayes approach. Ann. Appl. Stat. 8 852–885.
  • Molina, I. and Rao, J. N. K. (2010). Small area estimation of poverty indicators. Canad. J. Statist. 38 369–385.
  • Namazi-Rad, M.-R. and Steel, D. (2015). What level of statistical model should we use in small area estimation? Aust. N. Z. J. Stat. 57 275–298.
  • Noble, A., Haslett, S. J. and Arnold, G. (2002). Small area estimation via generalized linear models. J. Off. Stat. 18 45–60.
  • Noble, A., Haslett, S. J. and Arnold, G. (2006). Erratum to: Small area estimation via generalized linear models. J. Off. Stat. 22 159–160; J. Off. Stat. 18 (2002) 45–60.
  • NSCB (2005). Estimation of local poverty in the Philippines. National Statistical Coordination Board, Philippines. Available at http://www.nscb.gov.ph/poverty/sae/NSCB_LocalPovertyPhilippines.pdf.
  • NSCB (2009). 2003 City and Municipal level poverty estimates. National Statistical Coordination Board, Philippines. Available at http://www.nscb.gov.ph/poverty/sae/2003%20SAE%20of%20poverty%20(Full/%20Report).pdf.
  • Purcell, N. J. (1979). Efficient estimation for small domains: A categorical data analysis approach. Unpublished Ph.D. thesis, Univ. Michigan.
  • Purcell, N. J. and Kish, L. (1980). Postcensal estimates for local areas. Int. Stat. Rev. 48 3–18.
  • Rao, J. N. K. (2003). Small Area Estimation. Wiley, Hoboken, NJ.
  • RDC-I (2008). Approving the common masterlist of priority program benefeciaries (CMBPP) for region I poverty reduction program. RDC Resolution No. 57 S.
  • StataCorp (2007). Stata Statistical Software: Release 10. StataCorp LP, College Station, TX.
  • Tarozzi, A. and Deaton, A. (2009). Using census and survey data to estimate poverty and inequality for small areas. Rev. Econ. Stat. 91 773–792.
  • Wolter, K. M. (1985). Introduction to Variance Estimation. Springer, New York.