The Annals of Applied Statistics

Statistical unfolding of elementary particle spectra: Empirical Bayes estimation and bias-corrected uncertainty quantification

Mikael Kuusela and Victor M. Panaretos

Full-text: Open access

Abstract

We consider the high energy physics unfolding problem where the goal is to estimate the spectrum of elementary particles given observations distorted by the limited resolution of a particle detector. This important statistical inverse problem arising in data analysis at the Large Hadron Collider at CERN consists in estimating the intensity function of an indirectly observed Poisson point process. Unfolding typically proceeds in two steps: one first produces a regularized point estimate of the unknown intensity and then uses the variability of this estimator to form frequentist confidence intervals that quantify the uncertainty of the solution. In this paper, we propose forming the point estimate using empirical Bayes estimation which enables a data-driven choice of the regularization strength through marginal maximum likelihood estimation. Observing that neither Bayesian credible intervals nor standard bootstrap confidence intervals succeed in achieving good frequentist coverage in this problem due to the inherent bias of the regularized point estimate, we introduce an iteratively bias-corrected bootstrap technique for constructing improved confidence intervals. We show using simulations that this enables us to achieve nearly nominal frequentist coverage with only a modest increase in interval length. The proposed methodology is applied to unfolding the $Z$ boson invariant mass spectrum as measured in the CMS experiment at the Large Hadron Collider.

Article information

Source
Ann. Appl. Stat., Volume 9, Number 3 (2015), 1671-1705.

Dates
Received: January 2014
Revised: July 2015
First available in Project Euclid: 2 November 2015

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1446488756

Digital Object Identifier
doi:10.1214/15-AOAS857

Mathematical Reviews number (MathSciNet)
MR3418740

Zentralblatt MATH identifier
06526003

Keywords
Poisson inverse problem high energy physics Large Hadron Collider Poisson process regularization bootstrap Monte Carlo EM Algorithm

Citation

Kuusela, Mikael; Panaretos, Victor M. Statistical unfolding of elementary particle spectra: Empirical Bayes estimation and bias-corrected uncertainty quantification. Ann. Appl. Stat. 9 (2015), no. 3, 1671--1705. doi:10.1214/15-AOAS857. https://projecteuclid.org/euclid.aoas/1446488756


Export citation

References

  • Aad, G. et al. (2012). Measurement of the transverse momentum distribution of W bosons in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector. Phys. Rev. D 85 012005.
  • Antoniadis, A. and Bigot, J. (2006). Poisson inverse problems. Ann. Statist. 34 2132–2158.
  • Bardsley, J. M. and Goldes, J. (2009). Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation. Inverse Probl. 25 095005.
  • Barney, D. (2004). CMS-doc-4172. Available at https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/ShowDocument?docid=4172. Retrieved 21.1.2014.
  • Beringer, J. et al. (2012). Review of particle physics. Phys. Rev. D 86 010001.
  • Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer, New York.
  • Blobel, V. (1985). Unfolding methods in high-energy physics experiments. In Proceedings of the 1984 CERN School of Computing (C. Verkern, ed.) CERN 85-09 88-127. CERN, Geneva.
  • Blobel, V. (2013). Unfolding. In Data Analysis in High Energy Physics: A Practical Guide to Statistical Methods (O. Behnke, K. Kröninger, G. Schott and T. Schörner-Sadenius, eds.) 187–225. Wiley-VCH, Weinheim.
  • Bochkina, N. (2013). Consistency of the posterior distribution in generalized linear inverse problems. Inverse Probl. 29 095010, 43.
  • Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. J. R. Stat. Soc. Ser. B. Stat. Methodol. 61 265–285.
  • Calvetti, D., Kaipio, J. P. and Someralo, E. (2006). Aristotelian prior boundary conditions. Int. J. Math. Comput. Sci. 1 63–81.
  • Carlin, B. P. and Louis, T. A. (2009). Bayesian Methods for Data Analysis, 3rd ed. CRC Press, Boca Raton, FL.
  • Casella, G. (2001). Empirical Bayes Gibbs sampling. Biostatistics 2 485–500.
  • Chatrchyan, S. et al. (2008). The CMS experiment at the CERN LHC. Journal of Instrumentation 3 S08004.
  • Chatrchyan, S. et al. (2009). Particle-flow event reconstruction in CMS and performance for jets, taus, and ${E}_{\mathrm{T}}^{\mathrm{miss}}$. CMS Physics Analysis Summary CMS-PAS-PFT-09-001.
  • Chatrchyan, S. et al. (2012a). Shape, transverse size, and charged-hadron multiplicity of jets in $pp$ collisions at $\sqrt{s}=7$ TeV. J. High Energy Phys. 06 160.
  • Chatrchyan, S. et al. (2012b). Measurement of the charge asymmetry in top-quark pair production in proton–proton collisions at $\sqrt{s}=7$ TeV. Phys. Lett. B 709 28–49.
  • Chatrchyan, S. et al. (2012c). Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716 30–61.
  • Chatrchyan, S. et al. (2013). Energy calibration and resolution of the CMS electromagnetic calorimeter in $pp$ collisions at $\sqrt{s}=7$ TeV. Journal of Instrumentation 8 P09009.
  • Choudalakis, G. (2012). Fully Bayesian unfolding. Available at arXiv:1201.4612v4 [physics.data-an].
  • Cowan, G. (1998). Statistical Data Analysis. Oxford Univ. Press, London.
  • D’Agostini, G. (1995). A multidimensional unfolding method based on Bayes’ theorem. Nuclear Instruments and Methods in Physics Research A 362 487–498.
  • Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their Application. Cambridge Series in Statistical and Probabilistic Mathematics 1. Cambridge Univ. Press, Cambridge.
  • de Boor, C. (2001). A Practical Guide to Splines, revised ed. Applied Mathematical Sciences 27. Springer, New York.
  • de Boor, C. and Daniel, J. W. (1974). Splines with nonnegative $B$-spline coefficients. Math. Comp. 28 565–568.
  • Dembinski, H. P. and Roth, M. (2011). ARU—Towards automatic unfolding of detector effects. In Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding (H. B. Prosper and L. Lyons, eds.) CERN-2011-006 285–291. CERN, Geneva.
  • Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B. Stat. Methodol. 39 1–38.
  • Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability 57. Chapman & Hall, New York.
  • Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with $B$-splines and penalties. Statist. Sci. 11 89–121.
  • Engl, H. W., Hanke, M. and Neubauer, A. (2000). Regularization of Inverse Problems. Kluwer Academic Publishers, Dordrecht.
  • Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1 515–533.
  • Geman, S. and McClure, D. E. (1985). Bayesian image analysis: An application to single photon emission tomography. In Proceedings of the Statistical Computing Section 12–18. Amer. Statist. Assoc., Alexandria, VA.
  • Geman, S. and McClure, D. E. (1987). Statistical methods for tomographic image reconstruction. Bull. Inst. Internat. Statist. 52 5–21.
  • Gilks, W. R. (1996). Full conditional distributions. In Markov Chain Monte Carlo in Practice (W. R. Gilks, S. Richardson and D. J. Spiegelhalter, eds.) 75–88. Chapman & Hall, London.
  • Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in Practice. Chapman & Hall, London.
  • Goldstein, H. (1996). Consistent estimators for multilevel generalized linear models using an iterated bootstrap. Multilevel Modelling Newsletter 8 3–6.
  • Höcker, A. and Kartvelishvili, V. (1996). SVD approach to data unfolding. Nuclear Instruments and Methods in Physics Research A 372 469–481.
  • Javanmard, A. and Montanari, A. (2014). Confidence intervals and hypothesis testing for high-dimensional regression. J. Mach. Learn. Res. 15 2869–2909.
  • Kaipio, J. and Somersalo, E. (2005). Statistical and Computational Inverse Problems. Applied Mathematical Sciences 160. Springer, New York.
  • Kuk, A. Y. C. (1995). Asymptotically unbiased estimation in generalized linear models with random effects. J. R. Stat. Soc. Ser. B. Stat. Methodol. 57 395–407.
  • Kuusela, M. and Panaretos, V. M. (2015). Supplement to “Statistical unfolding of elementary particle spectra: Empirical Bayes estimation and bias-corrected uncertainty quantification.” DOI:10.1214/15-AOAS857SUPP.
  • Lucy, L. B. (1974). An iterative technique for the rectification of observed distributions. Astronomical Journal 79 745–754.
  • Lyons, L. (2011). Unfolding: Introduction. In Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding (H. B. Prosper and L. Lyons, eds.) CERN-2011-006 225–228. CERN, Geneva.
  • Lyons, L. (2013). Bayes and frequentism: A particle physicist’s perspective. Contemporary Physics 54 1–16.
  • McLachlan, G. J. and Krishnan, T. (2008). The EM Algorithm and Extensions, 2nd ed. Wiley, Hoboken, NJ.
  • Meister, A. (2009). Deconvolution Problems in Nonparametric Statistics. Lecture Notes in Statistics 193. Springer, Berlin.
  • Milke, N., Doert, M., Klepser, S., Mazin, D., Blobel, V. and Rhode, W. (2013). Solving inverse problems with the unfolding program TRUEE: Examples in astroparticle physics. Nuclear Instruments and Methods in Physics Research A 697 133–147.
  • Morozov, V. A. (1966). On the solution of functional equations by the method of regularization. Soviet Math. Dokl. 7 414–417.
  • Nychka, D. (1988). Bayesian confidence intervals for smoothing splines. J. Amer. Statist. Assoc. 83 1134–1143.
  • O’Sullivan, F. (1986). A statistical perspective on ill-posed inverse problems. Statist. Sci. 1 502–527.
  • O’Sullivan, F. (1988). Fast computation of fully automated log-density and log-hazard estimators. SIAM J. Sci. Statist. Comput. 9 363–379.
  • Oreglia, M. J. (1980). A study of the reactions $\psi'\rightarrow\gamma\gamma\psi$. Ph.D. thesis, Stanford Univ.
  • Panaretos, V. M. (2011). A statistician’s view on deconvolution and unfolding. In Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding (H. B. Prosper and L.Lyons, eds.) CERN-2011-006 229–239. CERN, Geneva.
  • Pintore, A., Speckman, P. and Holmes, C. C. (2006). Spatially adaptive smoothing splines. Biometrika 93 113–125.
  • Prosper, H. B. and Lyons, L., eds. (2011). Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding. CERN-2011-006. CERN, Geneva.
  • Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA.
  • Reiss, R.-D. (1993). A Course on Point Processes. Springer, New York.
  • Richardson, W. H. (1972). Bayesian-based iterative method of image restoration. J. Opt. Soc. Amer. A 62 55–59.
  • Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods, 2nd ed. Springer, New York.
  • Ruppert, D. and Carroll, R. J. (2000). Spatially-adaptive penalties for spline fitting. Aust. N.Z. J. Stat. 42 205–223.
  • Ruppert, D., Wand, M. P. and Carroll, R. J. (2003). Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics 12. Cambridge Univ. Press, Cambridge.
  • Saquib, S. S., Bouman, C. A. and Sauer, K. (1998). ML parameter estimation for Markov random fields with applications to Bayesian tomography. IEEE Trans. Image Process. 7 1029–1044.
  • Schumaker, L. L. (2007). Spline Functions: Basic Theory, 3rd ed. Cambridge Univ. Press, Cambridge.
  • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B. Stat. Methodol. 36 111–147.
  • Vardi, Y., Shepp, L. A. and Kaufman, L. (1985). A statistical model for positron emission tomography. J. Amer. Statist. Assoc. 80 8–37.
  • Veklerov, E. and Llacer, J. (1987). Stopping rule for the MLE algorithm based on statistical hypothesis testing. IEEE Trans. Med. Imaging 6 313–319.
  • Wahba, G. (1983). Bayesian “confidence intervals” for the cross-validated smoothing spline. J. R. Stat. Soc. Ser. B. Stat. Methodol. 45 133–150.
  • Wahba, G. (1990). Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics 59. SIAM, Philadelphia, PA.
  • Wei, G. C. G. and Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms. J. Amer. Statist. Assoc. 85 699–704.
  • Weir, I. S. (1997). Fully Bayesian reconstructions from single-photon emission computed tomography data. J. Amer. Statist. Assoc. 92 49–60.
  • Wood, S. N. (2006). On confidence intervals for generalized additive models based on penalized regression splines. Aust. N.Z. J. Stat. 48 445–464.
  • Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 73 3–36.

Supplemental materials

  • Supplement to “Statistical unfolding of elementary particle spectra: Empirical Bayes estimation and bias-corrected uncertainty quantification”. The supplement provides a comparison of the empirical Bayes and hierarchical Bayes approaches to unfolding; additional simulations results complementing those of Section 5; and technical material on the convergence and mixing of the MCMC sampler and on the Gaussian approximation used in the coverage studies.