The Annals of Applied Statistics

Combining nonexchangeable functional or survival data sources in oncology using generalized mixture commensurate priors

Thomas A. Murray, Brian P. Hobbs, and Bradley P. Carlin

Full-text: Open access


Conventional approaches to statistical inference preclude structures that facilitate incorporation of supplemental information acquired from similar circumstances. For example, the analysis of data obtained using perfusion computed tomography to characterize functional imaging biomarkers in cancerous regions of the liver can benefit from partially informative data collected concurrently in noncancerous regions. This paper presents a hierarchical model structure that leverages all available information about a curve, using penalized splines, while accommodating important between-source features. Our proposed methods flexibly borrow strength from the supplemental data to a degree that reflects the commensurability of the supplemental curve with the primary curve. We investigate our method’s properties for nonparametric regression via simulation, and apply it to a set of liver cancer data. We also apply our method for a semiparametric hazard model to data from a clinical trial that compares time to disease progression for three colorectal cancer treatments, while supplementing inference with information from a previous trial that tested the current standard of care.

Article information

Ann. Appl. Stat., Volume 9, Number 3 (2015), 1549-1570.

Received: March 2014
Revised: March 2015
First available in Project Euclid: 2 November 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Bayesian hierarchical model clinical trials colorectal cancer commensurate prior computed tomographic imaging evidence synthesis mixture priors penalized splines proportional hazards semiparametric methods


Murray, Thomas A.; Hobbs, Brian P.; Carlin, Bradley P. Combining nonexchangeable functional or survival data sources in oncology using generalized mixture commensurate priors. Ann. Appl. Stat. 9 (2015), no. 3, 1549--1570. doi:10.1214/15-AOAS840.

Export citation


  • Carlin, B. P. and Louis, T. A. (2009). Bayesian Methods for Data Analysis, 3rd ed. Texts in Statistical Science Series. CRC Press, Boca Raton, FL.
  • Crainiceanu, C. M., Ruppert, D. and Wand, M. P. (2005). Bayesian analysis for penalized spline regression using WinBUGS. J. Stat. Softw. 14 1–24.
  • Doi, S. A. R., Barendregt, J. J. and Mozurkewich, E. L. (2011). Meta-analysis of heterogeneous clinical trials: An empirical example. Contemp. Clin. Trials 32 288–298.
  • Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with $B$-splines and penalties. Statist. Sci. 11 89–121.
  • Fahrmeir, L. and Lang, S. (2001). Bayesian inference for generalized additive mixed models based on Markov random field priors. J. Roy. Statist. Soc. Ser. C 50 201–220.
  • George, E. I. and McCulloch, R. E. (1997). Approaches for Bayesian variable selection. Statist. Sinica 7 339–373.
  • Goldberg, R. M., Sargent, D. J., Morton, R. F., Fuchs, C. S., Ramanathan, R. K., Williamson, S. K., Findlay, B. P., Pitot, H. C. and Alberts, S. R. (2004). A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J. Clin. Oncol. 22 23–30.
  • Hobbs, B. P., Carlin, B. P. and Sargent, D. J. (2013). Adaptive adjustment of the randomization ratio using historical control data. Clin. Trials 10 430–440.
  • Hobbs, B. P., Sargent, D. J. and Carlin, B. P. (2012). Commensurate priors for incorporating historical information in clinical trials using general and generalized linear models. Bayesian Anal. 7 639–673.
  • Hobbs, B. P., Carlin, B. P., Mandrekar, S. J. and Sargent, D. J. (2011). Hierarchical commensurate and power prior models for adaptive incorporation of historical information in clinical trials. Biometrics 67 1047–1056.
  • Ibrahim, J. G. and Chen, M.-H. (2000). Power prior distributions for regression models. Statist. Sci. 15 46–60.
  • Ibrahim, J. G., Chen, M.-H. and Sinha, D. (2001). Bayesian Survival Analysis. Springer, New York.
  • Krivobokova, T., Kneib, T. and Claeskens, G. (2010). Simultaneous confidence bands for penalized spline estimators. J. Amer. Statist. Assoc. 105 852–863.
  • Miles, K. A. and Griffiths, M. R. (2003). Perfusion CT: A worthwhile enhancement? Br. J. Radiol. 76 220–231.
  • Murray, T. A., Hobbs, B. P., Lystig, T. C. and Carlin, B. P. (2014). Semiparametric Bayesian commensurate survival model for post-market medical device surveillance with non-exchangeable historical data. Biometrics 70 185–191.
  • Neelon, B. and O’Malley, A. J. (2010). Bayesian analysis using power priors with application to pediatric quality of care. J. Biometr. Biostat. 1 103.
  • Ng, C. S., Hobbs, B. P., Chandler, A. G., Anderson, E. F., Herron, D. H., Charnsangavej, C. and Yao, J. (2013). Metastases to the liver from neuroendocrine tumors: Effect of duration of scan acquisition on CT perfusion values. Radiology 269 758–767.
  • Pocock, S. J. (1976). The combination of randomized and historical controls in clinical trials. J. Chronic Dis. 29 175–188.
  • Ruppert, D., Wand, M. P. and Carroll, R. J. (2003). Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics 12. Cambridge Univ. Press, Cambridge.
  • Saltz, L. B., Cox, J. V., Blanke, C., Rosen, L. S., Fehrenbacher, L., Moore, M. J., Maroun, J. A., Ackland, S. P., Locker, P. K., Pirotta, N., Elfring, G. L. and Miller, L. L. (2000). Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 343 905–914.
  • Smith, T. C., Spiegelhalter, D. J. and Thomas, A. (1995). Bayesian approaches to random-effects meta-analysis: A comparative study. Stat. Med. 14 2685–2699.
  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 583–639.
  • Wand, M. P. (2000). A comparison of regression spline smoothing procedures. Comput. Statist. 15 443–462.