Annals of Applied Statistics
- Ann. Appl. Stat.
- Volume 9, Number 2 (2015), 714-730.
Semiparametric time to event models in the presence of error-prone, self-reported outcomes—With application to the women’s health initiative
Xiangdong Gu, Yunsheng Ma, and Raji Balasubramanian
Abstract
The onset of several silent, chronic diseases such as diabetes can be detected only through diagnostic tests. Due to cost considerations, self-reported outcomes are routinely collected in lieu of expensive diagnostic tests in large-scale prospective investigations such as the Women’s Health Initiative. However, self-reported outcomes are subject to imperfect sensitivity and specificity. Using a semiparametric likelihood-based approach, we present time to event models to estimate the association of one or more covariates with a error-prone, self-reported outcome. We present simulation studies to assess the effect of error in self-reported outcomes with regard to bias in the estimation of the regression parameter of interest. We apply the proposed methods to prospective data from 152,830 women enrolled in the Women’s Health Initiative to evaluate the effect of statin use with the risk of incident diabetes mellitus among postmenopausal women. The current analysis is based on follow-up through 2010, with a median duration of follow-up of 12.1 years. The methods proposed in this paper are readily implemented using our freely available R software package icensmis, which is available at the Comprehensive R Archive Network (CRAN) website.
Article information
Source
Ann. Appl. Stat., Volume 9, Number 2 (2015), 714-730.
Dates
Received: September 2014
Revised: January 2015
First available in Project Euclid: 20 July 2015
Permanent link to this document
https://projecteuclid.org/euclid.aoas/1437397108
Digital Object Identifier
doi:10.1214/15-AOAS810
Mathematical Reviews number (MathSciNet)
MR3371332
Zentralblatt MATH identifier
06499927
Keywords
Measurement error panel data interval censoring time to event outcomes
Citation
Gu, Xiangdong; Ma, Yunsheng; Balasubramanian, Raji. Semiparametric time to event models in the presence of error-prone, self-reported outcomes—With application to the women’s health initiative. Ann. Appl. Stat. 9 (2015), no. 2, 714--730. doi:10.1214/15-AOAS810. https://projecteuclid.org/euclid.aoas/1437397108
Supplemental materials
- Tutorial for using the R package
icensmis
. We present a short tutorial using the R package icensmis to perform the analysis described in this paper.Digital Object Identifier: doi:10.1214/15-AOAS810SUPP

