The Annals of Applied Statistics

Inferring network structure from interventional time-course experiments

Simon E. F. Spencer, Steven M. Hill, and Sach Mukherjee

Full-text: Open access


Graphical models are widely used to study biological networks. Interventions on network nodes are an important feature of many experimental designs for the study of biological networks. In this paper we put forward a causal variant of dynamic Bayesian networks (DBNs) for the purpose of modeling time-course data with interventions. The models inherit the simplicity and computational efficiency of DBNs but allow interventional data to be integrated into network inference. We show empirical results, on both simulated and experimental data, that demonstrate the need to appropriately handle interventions when interventions form part of the design.

Article information

Ann. Appl. Stat., Volume 9, Number 1 (2015), 507-524.

First available in Project Euclid: 28 April 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Bayesian inference network inference structure learning causal inference dynamic Bayesian network causal Bayesian network


Spencer, Simon E. F.; Hill, Steven M.; Mukherjee, Sach. Inferring network structure from interventional time-course experiments. Ann. Appl. Stat. 9 (2015), no. 1, 507--524. doi:10.1214/15-AOAS806.

Export citation


  • Äijö, T. and Lähdesmäki, H. (2009). Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinformatics 25 2937–2944.
  • Akbani, R. et alet al. (2014). A pan-cancer proteomic perspective on the Cancer Genome Atlas. Nature Communications 5 3887.
  • Bansal, M., Gatta, G. D. and di Bernardo, D. (2006). Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22 815–822.
  • Bender, C., Henjes, F., Fröhlich, H., Wiemann, S., Korf, U. and Beissbarth, T. (2010). Dynamic deterministic effects propagation networks: Learning signalling pathways from longitudinal protein array data. Bioinformatics 26 i596–i602.
  • Dawid, A. P. (2007). Fundamentals of statistical causality. Research Report No. 279, Dept. Statistical Science, Univ. College, London.
  • Denison, D. G. T. et alet al. (2002). Bayesian Methods for Non-Linear Classification and Regression. Wiley, Chichester, UK.
  • Eaton, D. and Murphy, K. (2007). Exact Bayesian structure learning from uncertain interventions. Journal of Machine Learning Research: Workshop and Conference Proceedings 2 107–114.
  • Friedman, N., Murphy, K. and Russell, S. (1998). Learning the structure of dynamic probabilistic networks. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence 139–147. Morgan Kaufmann, San Francisco, CA.
  • Hill, S. M. et alet al. (2012). Bayesian inference of signaling network topology in a cancer cell line. Bioinformatics 28 2804–2810.
  • Husmeier, D. (2003). Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19 2271–2282.
  • Hyttinen, A., Eberhardt, F. and Hoyer, P. O. (2013). Experiment selection for causal discovery. J. Mach. Learn. Res. 14 3041–3071.
  • Ideker, T. and Krogan, N. J. (2012). Differential network biology. Mol. Syst. Biol. 8 565.
  • Kohn, R., Smith, M. and Chan, D. (2001). Nonparametric regression using linear combinations of basis functions. Stat. Comput. 11 313–322.
  • Maathuis, M. H., Kalisch, M. and Bühlmann, P. (2009). Estimating high-dimensional intervention effects from observational data. Ann. Statist. 37 3133–3164.
  • Maher, B. (2012). ENCODE: The human encyclopaedia. Nature 489 46–48.
  • Mukherjee, S. and Speed, T. P. (2008). Network inference using informative priors. Proc. Natl. Acad. Sci. USA 105 14313–14318.
  • Murphy, K. P. (2002). Dynamic Bayesian networks: Representation, inference and learning. Ph.D. thesis, Univ. California, Berkeley.
  • Neve, R. M. et alet al. (2006). A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10 515–527.
  • Oates, C. J. and Mukherjee, S. (2012). Network inference and biological dynamics. Ann. Appl. Stat. 6 1209–1235.
  • Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge Univ. Press, Cambridge.
  • Pearl, J. (2009). Causal inference in statistics: An overview. Stat. Surv. 3 96–146.
  • Pearl, J. and Bareinboim, E. (2014). External validity: From do-calculus to transportability across populations. Statist. Sci. 29 579–595.
  • Scott, J. G. and Berger, J. O. (2010). Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. Ann. Statist. 38 2587–2619.
  • Smith, M. and Kohn, R. (1996). Nonparametric regression using Bayesian variable selection. J. Econometrics 75 317–344.
  • Spencer, S. E. F., Hill, S. M. and Mukherjee, S. (2015). Supplement to “Inferring network structure from interventional time-course experiments.” DOI:10.1214/15-AOAS806SUPP.
  • Werhli, A. V. and Husmeier, D. (2007). Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol. 6 47 pp. (electronic).

Supplemental materials

  • Supplement to "Inferring network structure from interventional time-course experiments".: Additional technical information about orthogonalization, the experimental procedure and the intervention models, including a toy example. Supplementary figures showing the prior network, the "true" network used for simulations and the posterior signaling networks without interventions.