The Annals of Applied Statistics

Modeling the effect of temperature on ozone-related mortality

Ander Wilson, Ana G. Rappold, Lucas M. Neas, and Brian J. Reich

Full-text: Open access


Climate change is expected to alter the distribution of ambient ozone levels and temperatures which, in turn, may impact public health. Much research has focused on the effect of short-term ozone exposures on mortality and morbidity while controlling for temperature as a confounder, but less is known about the joint effects of ozone and temperature. The extent of the health effects of changing ozone levels and temperatures will depend on whether these effects are additive or synergistic. In this paper we propose a spatial, semi-parametric model to estimate the joint ozone-temperature risk surfaces in 95 US urban areas. Our methodology restricts the ozone-temperature risk surfaces to be monotone in ozone and allows for both nonadditive and nonlinear effects of ozone and temperature. We use data from the National Mortality and Morbidity Air Pollution Study (NMMAPS) and show that the proposed model fits the data better than additive linear and nonlinear models. We then examine the synergistic effect of ozone and temperature both nationally and locally and find evidence of a nonlinear ozone effect and an ozone-temperature interaction at higher temperatures and ozone concentrations.

Article information

Ann. Appl. Stat., Volume 8, Number 3 (2014), 1728-1749.

First available in Project Euclid: 23 October 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Air pollution monotone regression mortality ozone-temperature interaction semi-parametric regression spatial modeling


Wilson, Ander; Rappold, Ana G.; Neas, Lucas M.; Reich, Brian J. Modeling the effect of temperature on ozone-related mortality. Ann. Appl. Stat. 8 (2014), no. 3, 1728--1749. doi:10.1214/14-AOAS754.

Export citation


  • Banerjee, S., Gelfand, A. E. and Carlin, B. P. (2004). Hierarchical Modeling and Analysis for Spatial Data. CRC Press, Boca Raton, FL.
  • Bell, M. L. and Dominici, F. (2008). Effect modification by community characteristics on the short-term effects of ozone exposure and mortality in 98 US communities. Am. J. Epidemiol. 167 986–997.
  • Bell, M. L., Peng, R. D. and Dominici, F. (2006). The exposure-response curve for ozone and risk of mortality and the adequacy of current ozone regulations. Environ. Health Perspect. 114 532–536.
  • Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M. and Dominici, F. (2004). Ozone and short-term mortality in 95 US urban communities, 1987–2000. J. Am. Med. Assoc. 292 2372–2378.
  • Bhaskaran, K., Hajat, S., Haines, A., Herrett, E., Wilkinson, P. and Smeeth, L. (2009). Effects of ambient temperature on the incidence of myocardial infarction. Heart 95 1760–1769.
  • Bloomer, B. J., Stehr, J. W., Piety, C. A., Salawitch, R. J. and Dickerson, R. R. (2009). Observed relationships of ozone air pollution with temperature and emissions. Geophys. Res. Lett. 36.
  • Bobb, J. F., Dominici, F. and Peng, R. D. (2013). Reduced hierarchical models with application to estimating health effects of simultaneous exposure to multiple pollutants. J. R. Stat. Soc. Ser. C. Appl. Stat. 62 451–472.
  • Burkart, K., Canário, P., Breitner, S., Schneider, A., Scherber, K., Andrade, H., Alcoforado, M. J. and Endlicher, W. (2013). Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon. Environ. Pollut. 183 54–63.
  • Chang, I.-S., Chien, L.-C., Hsiung, C. A., Wen, C.-C. and Wu, Y.-J. (2007). Shape restricted regression with random Bernstein polynomials. In Complex Datasets and Inverse Problems. Institute of Mathematical Statistics Lecture Notes—Monograph Series 54 187–202. IMS, Beachwood, OH.
  • Chen, K., Yang, H. B., Ma, Z. W., Bi, J. and Huang, L. (2013). Influence of temperature to the short-term effects of various ozone metrics on daily mortality in Suzhou, China. Atmos. Environ. 79 119–128.
  • Cheng, Y. and Kan, H. (2012). Effect of the interaction between outdoor air pollution and extreme temperature on daily mortality in Shanghai, China. J. Epidemiol. 22 28–36.
  • Curriero, F. C., Heiner, K. S., Samet, J. M., Zeger, S. L., Strug, L. and Patz, J. A. (2002). Temperature and mortality in 11 cities of the eastern United States. Am. J. Epidemiol. 155 80–87.
  • Curtis, S. M. and Ghosh, S. K. (2011). A variable selection approach to monotonic regression with Bernstein polynomials. J. Appl. Stat. 38 961–976.
  • Dominici, F., Daniels, M., Zeger, S. L. and Samet, J. M. (2002). Air pollution and mortality: Estimating regional and national dose-response relationships. J. Amer. Statist. Assoc. 97 100–111.
  • Gelfand, A. E., Diggle, P. J., Guttorp, P. and Fuentes, P. (2013). Handbook of Spatial Statistics. CRC Press, Boca Raton, FL.
  • Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Monographs on Statistics and Applied Probability 43. Chapman & Hall, London.
  • Heaton, M. J. and Peng, R. D. (2012). Flexible distributed lag models using random functions with application to estimating mortality displacement from heat-related deaths. J. Agric. Biol. Environ. Stat. 17 313–331.
  • Heaton, M. J. and Peng, R. D. (2014). Extending distributed lag models to higher degrees. Biostatistics 15 398–412.
  • Hogrefe, C., Lynn, B., Civerolo, K., Ku, J.-Y., Rosenthal, J., Rosenzweig, C., Goldberg, R., Gaffin, S., Knowlton, K. and Kinney, P. L. (2004). Simulating changes in regional air pollution over the eastern United States due to changes in global and regional climate and emissions. J. Geophys. Res., Atmospheres 109.
  • Horstman, D. H., Folinsbee, J. L., Ives, P. J., Abdul-Salaam, S. and McDonnell, W. F. (1990). Ozone concentration and pulmonary response relationships for 6.6-hour exposures with five hours of moderate exercise to 0.08, 0.10, and 0.12 ppm. Am. Rev. Respir. Dis. 142 1158–1163.
  • IPCC, I. (2007). Fourth assessment report: Climate change 2007: Working group I report: The physical science basis. Technical report.
  • Kalendra, E. J. (2010). Space–time modeling of health effects while controlling for spatially varying exposure surfaces. Doctoral dissertation, Dept. of Statistics, North Carolina State Univ. (ID: NCSU2277462).
  • Korrick, S. A., Neas, L. M., Dockery, D. W., Gold, D. R., Allen, G. A., Hill, L. B., Kimball, K. D., Rosner, B. A. and Speizer, F. E. (1998). Effects of ozone and other pollutants on the pulmonary function of adult hikers. Environ. Health Perspect. 106 93–99.
  • Kunkel, K., Huang, H.-C., Liang, X.-Z., Lin, J.-T., Wuebbles, D., Tao, Z., Williams, A., Caughey, M., Zhu, J. and Hayhoe, K. (2008). Sensitivity of future ozone concentrations in the northeast USA to regional climate change. Mitig. Adapt. Strategies Glob. Change 13 597–606.
  • Lawson, A. B. (2006). Statistical Methods in Spatial Epidemiology. Wiley, Chichester.
  • Lorentz, G. G. (1986). Bernstein Polynomials, 2nd ed. Chelsea, New York.
  • McDonnell, W. F., Stewart, P. W., Smith, M. V., Kim, C. S. and Schelegle, E. S. (2012). Prediction of lung function response for populations exposed to a wide range of ozone conditions. Inhal. Toxicol. 24 619–633. PMID: 22906168.
  • National Research Council (2004). Research priorities for airborne particulate matter: IV, continuing research progress. Technical report, National Research Council of the National Academies, Washington, DC.
  • Ostro, B. (1993). The association of air pollution and mortality: Examining the case for inference. Archives of Environmental Health: An International Journal 48 336–342. PMID: 8215598.
  • Ren, C., Williams, G. M., Mengersen, K., Morawska, L. and Tong, S. (2008a). Does temperature modify short-term effects of ozone on total mortality in 60 large eastern US communities?—An assessment using the nmmaps data. Environ. Int. 34 451–458.
  • Ren, C., Williams, G. M., Morawska, L., Mengersen, K. and Tong, S. (2008b). Ozone modifies associations between temperature and cardiovascular mortality: analysis of the nmmaps data. Occup. Environ. Med. 65 255–260.
  • Samet, J. M., Dominici, F., Zeger, S. L., Schwartz, J. and Dockery, D. W. (2000a). The National Morbidity, Mortality, and Air Pollution Study Part I: Methods and Methodologic Issues. Health Effects Institute, Cambridge, MA.
  • Samet, J. M., Dominici, F., Zeger, S. L., Schwartz, J. and Dockery, D. W. (2000b). The National Morbidity, Mortality, and Air Pollution Study Part II: Morbidity and Mortality from Air Pollution in the United States. Health Effects Institute, Cambridge, MA.
  • Schwartz, J. (2000). The distributed lag between air pollution and daily deaths. Epidemiology 11 320–326.
  • Smith, R. L., Xu, B. and Switzer, P. (2009). Reassessing the relationship between ozone and short-term mortality in U.S. urban communities. Inhal. Toxicol. 21 37–61. PMID: 19731973.
  • Tagaris, E., Manomaiphiboon, K., Liao, K.-J., Leung, L. R., Woo, J.-H., He, S., Amar, P. and Russell, A. G. (2007). Impacts of global climate change and emissions on regional ozone and fine particulate matter concentrations over the United States. J. Geophys. Res., Atmospheres 112.
  • Tenbusch, A. (1997). Nonparametric curve estimation with Bernstein estimates. Metrika 45 1–30.
  • Turner, L. R., Barnett, A. G., Connell, D. and Tonga, S. (2012). Review article: Ambient temperature and cardiorespiratory morbidity: A systematic review and meta-analysis. Epidemiology 23 594–606.
  • US EPA (2006). Air quality criteria for ozone and related photochemical oxidants (2006 final). Technical Report EPA/600/R-05/004aF-cF, US Environmental Protection Agency, Washington, DC.
  • US EPA (2009). Assessment of the impacts of global change on regional US air quality: A synthesis of climate change impacts on ground-level ozone (an interim report of the US EPA Global Change Research Program). Technical Report MSU-CSE-00-2, US Environmental Protection Agency, Washington, DC.
  • US EPA (2013). Integrated science assessment of ozone and related photochemical oxidants (final report). Technical Report EPA/600/R-10/076F, US Environmental Protection Agency, Washington, DC.
  • Wang, J. and Ghosh, S. K. (2012). Shape restricted nonparametric regression with Bernstein polynomials. Comput. Statist. Data Anal. 56 2729–2741.
  • Welty, L. J. and Zeger, S. L. (2005). Are the acute effects of particulate matter on mortality in the national morbidity, mortality, and air pollution study the result of inadequate control for weather and season? A sensitivity analysis using flexible distributed lag models. Am. J. Epidemiol. 162 80–88.
  • Wilson, A., Rappold, A., Neas, L. and Reich, B. (2014). Supplement to “Modeling the effect of temperature on ozone-related mortality.” DOI:10.1214/14-AOAS754SUPP.
  • Wu, S., Mickley, L. J., Leibensperger, E. M., Jacob, D. J., Rind, D. and Streets, D. G. (2008). Effects of 2000–2050 global change on ozone air quality in the United States. J. Geophys. Res., Atmospheres 113.

Supplemental materials

  • Supplementary material: Appendices. Appendices referenced in the text are provided in the supplementary appendix file [Wilson et al. (2014)]. Appendix A: additional figures. Appendix B: cross-validation results. Appendix C: full conditional distributions. Appendix D: MCMC algorithm. Appendix E: trace plots.