The Annals of Applied Statistics

Analysis of multiple sclerosis lesions via spatially varying coefficients

Tian Ge, Nicole Müller-Lenke, Kerstin Bendfeldt, Thomas E. Nichols, and Timothy D. Johnson

Full-text: Open access

Abstract

Magnetic resonance imaging (MRI) plays a vital role in the scientific investigation and clinical management of multiple sclerosis. Analyses of binary multiple sclerosis lesion maps are typically “mass univariate” and conducted with standard linear models that are ill suited to the binary nature of the data and ignore the spatial dependence between nearby voxels (volume elements). Smoothing the lesion maps does not entirely eliminate the non-Gaussian nature of the data and requires an arbitrary choice of the smoothing parameter. Here we present a Bayesian spatial model to accurately model binary lesion maps and to determine if there is spatial dependence between lesion location and subject specific covariates such as MS subtype, age, gender, disease duration and disease severity measures. We apply our model to binary lesion maps derived from $T_{2}$-weighted MRI images from 250 multiple sclerosis patients classified into five clinical subtypes, and demonstrate unique modeling and predictive capabilities over existing methods.

Article information

Source
Ann. Appl. Stat., Volume 8, Number 2 (2014), 1095-1118.

Dates
First available in Project Euclid: 1 July 2014

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1404229527

Digital Object Identifier
doi:10.1214/14-AOAS718

Mathematical Reviews number (MathSciNet)
MR3262547

Zentralblatt MATH identifier
06333789

Keywords
Image analysis multiple sclerosis magnetic resonance imaging lesion probability map Markov random fields conditional autoregressive model spatially varying coefficients

Citation

Ge, Tian; Müller-Lenke, Nicole; Bendfeldt, Kerstin; Nichols, Thomas E.; Johnson, Timothy D. Analysis of multiple sclerosis lesions via spatially varying coefficients. Ann. Appl. Stat. 8 (2014), no. 2, 1095--1118. doi:10.1214/14-AOAS718. https://projecteuclid.org/euclid.aoas/1404229527


Export citation

References

  • Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. J. Amer. Statist. Assoc. 88 669–679.
  • Anbeek, P., Vincken, K. L., van Osch, M. J. P., Bisschops, R. H. C. and van der Grond, J. (2004). Probabilistic segmentation of white matter lesions in MR imaging. NeuroImage 21 1037–1044.
  • Ashburner, J. T. and Friston, K. J. (2000). Voxel-based morphometry—The methods. NeuroImage 11 805–821.
  • Bakshi, R., Thompson, A. J., Rocca, M. A., Pelletier, D., Dousset, V. et al. (2008). MRI in multiple sclerosis: Current status and future prospects. The Lancet Neurology 7 615–625.
  • Banerjee, S., Gelfand, A. E., Finley, A. O. and Sang, H. (2008). Gaussian predictive process models for large spatial data sets. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 825–848.
  • Barkhof, F. (2002). The clinico-radiological paradox in multiple sclerosis revisited. Curr. Opin. Neurol. 15 239–245.
  • Bates, E., Wilson, S. M., Saygin, A. P., Dick, F., Sereno, M. I. et al. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience 6 448–449.
  • Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B Stat. Methodol. 36 192–236.
  • Besag, J. (1986). On the statistical analysis of dirty pictures. J. R. Stat. Soc. Ser. B Stat. Methodol. 48 259–302.
  • Besag, J. (1993). Towards Bayesian image analysis. J. Appl. Stat. 20 107–119.
  • Brook, D. (1964). On the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbour systems. Biometrika 51 481–483.
  • Charil, A., Zijdenbos, A. P., Taylor, J., Boelman, C., Worsley, K. J. et al. (2003). Statistical mapping analysis of lesion location and neurological disability in multiple sclerosis: Application to 452 patient data sets. NeuroImage 19 532–544.
  • Charil, A., Dagher, A., Lerch, J. P., Zijdenbos, A. P., Worsley, K. J. et al. (2007). Focal cortical atrophy in multiple sclerosis: Relation to lesion load and disability. NeuroImage 34 509–517.
  • Compston, A. and Coles, A. (2008). Multiple sclerosis. The Lancet 372 25–31.
  • Crainiceanu, C. M., Staicu, A.-M. and Di, C.-Z. (2009). Generalized multilevel functional regression. J. Amer. Statist. Assoc. 104 1550–1561.
  • Dalton, C. M., Bodini, B., Samson, R. S., Battaglini, M., Fisniku, L. K. et al. (2012). Brain lesion location and clinical status 20 years after a diagnosis of clinically isolated syndrome suggestive of multiple sclerosis. Multiple Sclerosis 18 322–328.
  • Filippi, M. and Rocca, M. A. (2011). MR imaging of multiple sclerosis. Radiology 259 659–681.
  • Filippi, M., Cercignani, M., Inglese, M., Horsfield, M. A. and Comi, G. (2001). Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 56 304–311.
  • Filli, L., Hofstetter, L., Kuster, P., Traud, S., Mueller-Lenke, N. et al. (2012). Spatiotemporal distribution of white matter lesions in relapsing–remitting and secondary progressive multiple sclerosis. Multiple Sclerosis Journal 18 1577–1584.
  • Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika 80 27–38.
  • Furrer, R., Genton, M. G. and Nychka, D. (2006). Covariance tapering for interpolation of large spatial datasets. J. Comput. Graph. Statist. 15 502–523.
  • Ge, T., Müller-Lenke, N., Bendfeldt, K., Nichols, T. E. and Johnson, T. D. (2014). Supplement to “Analysis of multiple sclerosis lesions via spatially varying coefficients.” DOI:10.1214/14-AOAS718SUPP.
  • Gelfand, A. E., Dey, D. K. and Chang, H. (1992). Model determination using predictive distributions with implementation via sampling-based methods. In Bayesian Statistics, 4 (PeñíScola, 1991) 147–167. Oxford Univ. Press, New York.
  • Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 398–409.
  • Gelfand, A. E., Kim, H.-J., Sirmans, C. F. and Banerjee, S. (2003). Spatial modeling with spatially varying coefficient processes. J. Amer. Statist. Assoc. 98 387–396.
  • Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statist. Sci. 7 457–472.
  • Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 721–741.
  • Goldsmith, J., Crainiceanu, C. M., Caffo, B. S. and Reich, D. S. (2011). Penalized functional regression analysis of white-matter tract profiles in multiple sclerosis. Neuroimage 57 431–439.
  • Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 97–109.
  • Heinze, G. and Schemper, M. (2002). A solution to the problem of separation in logistic regression. Stat. Med. 21 2409–2419.
  • Holland, C. M., Charil, A., Csapo, I., Liptak, Z., Ichise, M. et al. (2012). The relationship between normal cerebral perfusion patterns and white matter lesion distribution in 1249 patients with multiple sclerosis. Journal of Neuroimaging 22 129–136.
  • Kacar, K., Rocca, M., Copetti, M., Sala, S., Mesaros, S. et al. (2011). Overcoming the clinical-MR imaging paradox of multiple sclerosis: MR imaging data assessed with a random forest approach. American Journal of Neuroradiology 32 2098–2102.
  • Kaufman, C. G., Schervish, M. J. and Nychka, D. W. (2008). Covariance tapering for likelihood-based estimation in large spatial data sets. J. Amer. Statist. Assoc. 103 1545–1555.
  • Kincses, Z. T., Ropele, S., Jenkinson, M., Khalil, M., Petrovic, K. et al. (2011). Lesion probability mapping to explain clinical deficits and cognitive performance in multiple sclerosis. Multiple Sclerosis Journal 17 681–689.
  • Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of Chemical, Metallurgical and Mining Society of South Africa 52 119–139.
  • Kurtzke, J. F. (1983). Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 33 1444–1452.
  • Lublin, F. D. and Reingold, S. C. (1996). Defining the clinical course of multiple sclerosis: Results of an international survey. National multiple sclerosis society (USA) advisory committee on clinical trials of new agents in multiple sclerosis. Neurology 46 907–911.
  • Mardia, K. V. (1988). Multidimensional multivariate Gaussian Markov random fields with application to image processing. J. Multivariate Anal. 24 265–284.
  • Miller, D., Barkhof, F., Montalban, X., Thompson, A. and Filippi, M. (2005). Clinically isolated syndromes suggestive of multiple sclerosis, part I: Natural history, pathogenesis, diagnosis, and prognosis. The Lancet Neurology 4 281–288.
  • Neema, M., Stankiewicz, J., Arora, A., Guss, Z. D. and Bakshi, R. (2007). MRI in multiple sclerosis: What’s inside the toolbox? Neurotherapeutics 4 602–617.
  • Ramsay, J. O. and Silverman, B. W. (2006). Functional Data Analysis. Wiley.
  • Reiss, P. T., Huang, L. and Mennes, M. (2010). Fast function-on-scalar regression with penalized basis expansions. Int. J. Biostat. 6 30.
  • Reiss, P. T. and Ogden, R. T. (2010). Functional generalized linear models with images as predictors. Biometrics 66 61–69.
  • Robert, C. P. (1995). Simulation of truncated normal variables. Statist. Comput. 5 121–125.
  • Roosendaal, S. D., Geurts, J. J. G., Vrenken, H., Hulst, H. E., Cover, K. S. et al. (2009). Regional DTI differences in multiple sclerosis patients. NeuroImage 44 1397–1403.
  • Rovaris, M., Gass, A., Bammer, R., Hickman, S. J., Ciccarelli, O. et al. (2005). Diffusion MRI in multiple sclerosis. Neurology 65 1526–1532.
  • Spreen, O. and Strauss, E. (1998). A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary. Oxford Univ. Press.
  • Vrenken, H., Pouwels, P. J. W., Geurts, J. J. G., Knol, D. L., Polman, C. H. et al. (2006). Altered diffusion tensor in multiple sclerosis normal-appearing brain tissue: Cortical diffusion changes seem related to clinical deterioration. Journal of Magnetic Resonance Imaging 23 628–636.
  • Werring, D. J., Clark, C. A., Barker, G. J., Thompson, A. J. and Miller, D. H. (1999). Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52 1626–1632.
  • Zhang, H. (2004). The optimality of naive Bayes. In FLAIRS Conference, Univ. New Brunswick.

Supplemental materials

  • Supplementary material: Supplement to “Analysis of multiple sclerosis lesions via spatially varying coefficients”. This supplement contains full details of the Gibbs sampler, leave-one-out cross-validation and the naïve Bayesian classifier. It also contains supplementary figures.