The Annals of Applied Statistics

Small area estimation of general parameters with application to poverty indicators: A hierarchical Bayes approach

Isabel Molina, Balgobin Nandram, and J. N. K. Rao

Full-text: Open access

Abstract

Poverty maps are used to aid important political decisions such as allocation of development funds by governments and international organizations. Those decisions should be based on the most accurate poverty figures. However, often reliable poverty figures are not available at fine geographical levels or for particular risk population subgroups due to the sample size limitation of current national surveys. These surveys cannot cover adequately all the desired areas or population subgroups and, therefore, models relating the different areas are needed to “borrow strength” from area to area. In particular, the Spanish Survey on Income and Living Conditions (SILC) produces national poverty estimates but cannot provide poverty estimates by Spanish provinces due to the poor precision of direct estimates, which use only the province specific data. It also raises the ethical question of whether poverty is more severe for women than for men in a given province. We develop a hierarchical Bayes (HB) approach for poverty mapping in Spanish provinces by gender that overcomes the small province sample size problem of the SILC. The proposed approach has a wide scope of application because it can be used to estimate general nonlinear parameters. We use a Bayesian version of the nested error regression model in which Markov chain Monte Carlo procedures and the convergence monitoring therein are avoided. A simulation study reveals good frequentist properties of the HB approach. The resulting poverty maps indicate that poverty, both in frequency and intensity, is localized mostly in the southern and western provinces and it is more acute for women than for men in most of the provinces.

Article information

Source
Ann. Appl. Stat., Volume 8, Number 2 (2014), 852-885.

Dates
First available in Project Euclid: 1 July 2014

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1404229517

Digital Object Identifier
doi:10.1214/13-AOAS702

Mathematical Reviews number (MathSciNet)
MR3262537

Zentralblatt MATH identifier
06333779

Keywords
Hierarchical Bayes mixed linear model nested error linear regression model noninformative priors poverty mapping small area estimation

Citation

Molina, Isabel; Nandram, Balgobin; Rao, J. N. K. Small area estimation of general parameters with application to poverty indicators: A hierarchical Bayes approach. Ann. Appl. Stat. 8 (2014), no. 2, 852--885. doi:10.1214/13-AOAS702. https://projecteuclid.org/euclid.aoas/1404229517


Export citation

References

  • Battese, G. E., Harter, R. M. and Fuller, W. A. (1988). An error-components model for prediction of county crop areas using survey and satellite data. J. Amer. Statist. Assoc. 83 28–36.
  • Bell, W. (1997). Models for county and state poverty estimates. Preprint, Statistical Research Division, U.S. Census Bureau, Washington, DC.
  • Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis, 2nd ed. Springer, New York.
  • Betti, G., Cheli, B., Lemmi, A. and Verma, V. (2006). Multidimensional and longitudinal poverty: An integrated fuzzy approach. In Fuzzy Set Approach to Multidimensional Poverty Measurement (A. Lemmi and G. Betti, eds.) 111–137. Springer, New York.
  • Box, G. E. P. (1980). Sampling and Bayes’ inference in scientific modelling and robustness (Discussion by Professor Seymour Geisser). J. Roy. Statist. Soc. Ser. A 143 416–417.
  • Breidenbach, J. and Astrup, R. (2012). Small area estimation of forest attributes in the Norwegian national forest inventory. Eur. J. For. Res. 131 1255–1267.
  • Chen, M.-H. and Shao, Q.-M. (1999). Monte Carlo estimation of Bayesian credible and HPD intervals. J. Comput. Graph. Statist. 8 69–92.
  • Datta, G. S. (2009). Model-based approach to small area estimation. In Handbook of Statistics 29A: Sample Surveys: Design, Methods and Applications (D. Pfeffermann and C. R. Rao, eds.) 251–288. Elsevier, Amsterdam.
  • Datta, G. S. and Ghosh, M. (1991). Bayesian prediction in linear models: Applications to small area estimation. Ann. Statist. 19 1748–1770.
  • Elbers, C., Lanjouw, J. O. and Lanjouw, P. (2003). Micro-level estimation of poverty and inequality. Econometrica 71 355–364.
  • Ferretti, C. and Molina, I. (2012). Fast EB method for estimating complex poverty indicators in large populations. J. Indian Soc. Agricultural Statist. 66 105–120.
  • Foster, J., Greer, J. and Thorbecke, E. (1984). A class of decomposable poverty measures. Econometrica 52 761–766.
  • Gelfand, A. E., Dey, D. K. and Chang, H. (1992). Model determination using predictive distributions with implementation via sampling-based methods. In Bayesian Statistics, 4 (Peñíscola, 1991) 147–167. Oxford Univ. Press, New York.
  • Jiang, J. and Lahiri, P. (2006). Mixed model prediction and small area estimation. TEST 15 1–96.
  • Marhuenda, Y., Molina, I. and Morales, D. (2013). Small area estimation with spatio-temporal Fay–Herriot models. Comput. Statist. Data Anal. 58 308–325.
  • Mohadjer, L., Rao, J. N. K., Liu, B., Krenzke, T. and Van de Kerckhove, W. (2012). Hierarchical Bayes small area estimates of adult literacy using unmatched sampling and linking models. J. Indian Soc. Agricultural Statist. 66 55–63, 232–233.
  • Molina, I. and Morales, D. (2009). Small area estimation of poverty indicators. Bol. Estad. Investig. Oper. 25 218–225.
  • Molina, I. and Rao, J. N. K. (2010). Small area estimation of poverty indicators. Canad. J. Statist. 38 369–385.
  • Nandram, B. and Choi, J. W. (2005). Hierarchical Bayesian nonignorable nonresponse regression models for small areas: An application to the NHNES data. Surv. Methodol. 31 73–84.
  • Nandram, B. and Choi, J. W. (2010). A Bayesian analysis of body mass index data from small domains under nonignorable nonresponse and selection. J. Amer. Statist. Assoc. 105 120–135.
  • Nandram, B., Sedransk, J. and Pickle, L. W. (2000). Bayesian analysis and mapping of mortality rates for chronic obstructive pulmonary disease. J. Amer. Statist. Assoc. 95 1110–1118.
  • Natarajan, R. and Kass, R. E. (2000). Reference Bayesian methods for generalized linear mixed models. J. Amer. Statist. Assoc. 95 227–237.
  • Neri, L., Ballini, F. and Betti, G. (2005). Poverty and inequality in transition countries. Statistics in Transition 7 135–157.
  • Ntzoufras, I. (2009). Bayesian Modeling Using WinBUGS. Wiley, Hoboken, NJ.
  • Pettit, L. I. (1990). The conditional predictive ordinate for the normal distribution. J. R. Stat. Soc. Ser. B Stat. Methodol. 52 175–184.
  • Pfeffermann, D. (2013). New important developments in small area estimation. Statist. Sci. 28 40–68.
  • Pfeffermann, D. and Sverchkov, M. (2007). Small-area estimation under informative probability sampling of areas and within the selected areas. J. Amer. Statist. Assoc. 102 1427–1439.
  • Rao, J. N. K. (2003). Small Area Estimation. Wiley, Hoboken, NJ.
  • Toto, Ma. C. S. and Nandram, B. (2010). A Bayesian predictive inference for small area means incorporating covariates and sampling weights. J. Statist. Plann. Inference 140 2963–2979.
  • Wang, J. C., Holan, S. H., Nandram, B., Barboza, W., Toto, C. and Anderson, E. (2012). A Bayesian approach to estimating agricultural yield based on multiple repeated surveys. J. Agric. Biol. Environ. Stat. 17 84–106.
  • You, Y. and Zhou, Q. M. (2011). Hierarchical Bayes small area estimation under a spatial model with application to health survey data. Surv. Methodol. 37 25–37.