The Annals of Applied Statistics

Quantifying intrinsic and extrinsic noise in gene transcription using the linear noise approximation: An application to single cell data

Bärbel Finkenstädt, Dan J. Woodcock, Michal Komorowski, Claire V. Harper, Julian R. E. Davis, Mike R. H. White, and David A. Rand

Full-text: Open access


A central challenge in computational modeling of dynamic biological systems is parameter inference from experimental time course measurements. However, one would not only like to infer kinetic parameters but also study their variability from cell to cell. Here we focus on the case where single-cell fluorescent protein imaging time series data are available for a population of cells. Based on van Kampen’s linear noise approximation, we derive a dynamic state space model for molecular populations which is then extended to a hierarchical model. This model has potential to address the sources of variability relevant to single-cell data, namely, intrinsic noise due to the stochastic nature of the birth and death processes involved in reactions and extrinsic noise arising from the cell-to-cell variation of kinetic parameters. In order to infer such a model from experimental data, one must also quantify the measurement process where one has to allow for nonmeasurable molecular species as well as measurement noise of unknown level and variance. The availability of multiple single-cell time series data here provides a unique testbed to fit such a model and quantify these different sources of variation from experimental data.

Article information

Ann. Appl. Stat., Volume 7, Number 4 (2013), 1960-1982.

First available in Project Euclid: 23 December 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Linear noise approximation kinetic parameter estimation intrinsic and extrinsic noise state space model and Kalman filter Bayesian hierarchical modeling


Finkenstädt, Bärbel; Woodcock, Dan J.; Komorowski, Michal; Harper, Claire V.; Davis, Julian R. E.; White, Mike R. H.; Rand, David A. Quantifying intrinsic and extrinsic noise in gene transcription using the linear noise approximation: An application to single cell data. Ann. Appl. Stat. 7 (2013), no. 4, 1960--1982. doi:10.1214/13-AOAS669.

Export citation


  • Chib, S. and Greenberg, E. (1995). Understanding the Metropolis–Hastings algorithm. Amer. Statist. 49 327–336.
  • Craiu, R. V. and Lemieux, C. (2007). Acceleration of the multiple-try Metropolis algorithm using antithetic and stratified sampling. Stat. Comput. 17 109–120.
  • Durham, G. B. and Gallant, A. R. (2002). Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J. Bus. Econom. Statist. 20 297–316.
  • Elerian, O., Chib, S. and Shephard, N. (2001). Likelihood inference for discretely observed nonlinear diffusions. Econometrica 69 959–993.
  • Elf, J. and Ehrenberg, M. (2003). Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. Genome Res. 13 2475–2484.
  • Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002). Stochastic gene expression in a single cell. Science 297 1183–1186.
  • Fearnhead, P., Giagos, V. and Sherlock, C. (2013). Inference for reaction networks using the linear noise approximation. Available at arXiv:1205.6920.
  • Finkenstädt, B., Heron, E. A., Komorowski, M., Edwards, K., Tang, S., Harper, C. V., Davis, J. R. E., White, M. R. H., Millar, A. J. and Rand, D. A. (2008). Reconstruction of transcriptional dynamics from gene reporter data using differential equations. Bioinformatics 24 2901–2907.
  • Gamerman, D. and Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, 2nd ed. Chapman & Hall/CRC, Boca Raton, FL.
  • Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81 2340–2361.
  • Gillespie, D. T. (2001). Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115 1716.
  • Golightly, A. and Wilkinson, D. J. (2005). Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics 61 781–788.
  • Golightly, A. and Wilkinson, D. J. (2008). Bayesian inference for nonlinear multivariate diffusion models observed with error. Comput. Statist. Data Anal. 52 1674–1693.
  • Gonze, D., Halloy, J. and Goldbeter, A. (2002). Robustness of circadian rhythms with respect to molecular noise. Proc. Natl. Acad. Sci. USA 99 673–678.
  • Gordon, A., Colman-Lerner, A., Chin, T. E., Benjamin, K. R., Yu, R. C. and Brent, R. (2007). Single-cell quantification of molecules and rates using open-source microscope-based cytometry. Nature Methods 4 175–182.
  • Harper, C. V., Finkenstädt, B., Friedrichsen, S., Woodcock, D., Semprini, S., Spiller, D., Mullins, J. J., Rand, D. A., Davis, J. R. E. and White, M. R. H. (2011). Dynamic analysis of stochastic transcription cycles. PLoS Biology 9 1000607.
  • Heron, E. A., Finkenstädt, B. and Rand, D. A. (2007). Bayesian inference for dynamic transcriptional regulation; the Hes1 system as a case study. Bioinformatics 23 2589–2595.
  • Kloeden, P. E. and Platen, E. (1999). Numerical Solution of Stochastic Differential Equations, 3rd ed. Appl. Math. 22. Springer, Berlin.
  • Komorowski, M., Finkenstädt, B., Harper, C. V. and Rand, D. A. (2009). Bayesian inference of biochemical kinetic parameters using the linear noise approximation. BMC Bioinformatics 10 343.
  • Kurtz, T. G. (1971). Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Probab. 8 344–356.
  • Kurtz, T. G. (1981). Approximation of Population Processes. CBMS-NSF Regional Conference Series in Applied Mathematics 36. SIAM, Philadelphia, PA.
  • Liu, J. S., Liang, F. and Wong, W. H. (2000). The multiple-try method and local optimization in Metropolis sampling. J. Amer. Statist. Assoc. 95 121–134.
  • McKane, A. J. and Newman, T. J. (2005). Predator-prey cycles from resonant amplification of demographic stochasticity. Phys. Rev. Lett. 94 218102.
  • Paulsson, J. (2004). Summing up the noise in gene networks. Nature 427 415–418.
  • Paulsson, J. (2005). Models of stochastic gene expression. Physics of Life Reviews 2 157–175.
  • Scott, M., Ingalls, B. and Kaern, M. (2006). Estimations of intrinsic and extrinsic noise in models of nonlinear genetic networks. Chaos 16 026107.
  • Simoes, M., Telo da Gama, M. M. and Nunes, A. (2008). Stochastic fluctuations in epidemics on networks. Journal of the Royal Society Interface 5 555–566.
  • Stathopoulos, V. and Girolami, M. A. (2013). Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 371 20110541, 21.
  • Suter, D. M., Molino, N., Gatfield, D., Schneider, K., Schibler, U. and Naef, F. (2011). Mammalian genes are transcribed with widely different bursting kinetics. Science 332 472–474.
  • Swain, P. S., Elowitz, M. B. and Siggia, E. D. (2002). Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA 99 12795–12800.
  • Thattai, M. andvan Oudenaarden, A. (2001). Intrinsic noise in gene regulatory networks. Proc. Natl. Acad. Sci. USA 98 8614–8619.
  • Van Kampen, N. G. (1976). The expansion of the master equation. Adv. Chem. Phys. 34 245–309.
  • Van Kampen, N. G. (1997). Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam.
  • Wallace, E. W. J. (2010). A simplified derivation of the linear noise approximation. Preprint. Available at arXiv:1004.4280.
  • Wallace, E. W. J., Gillespie, D. T., Sanft, K. R. and Petzold, L. R. (2012). Linear noise approximation is valid over limited times for any chemical system that is sufficiently large. Systems Biology IET 6 102–115.
  • Wilkinson, D. J. (2011). Stochastic Modelling for Systems Biology, 2nd ed. Chapman & Hall/CRC, Boca Raton, FL.