The Annals of Applied Statistics

Daily minimum and maximum temperature simulation over complex terrain

William Kleiber, Richard W. Katz, and Balaji Rajagopalan

Full-text: Open access

Abstract

Spatiotemporal simulation of minimum and maximum temperature is a fundamental requirement for climate impact studies and hydrological or agricultural models. Particularly over regions with variable orography, these simulations are difficult to produce due to terrain driven nonstationarity. We develop a bivariate stochastic model for the spatiotemporal field of minimum and maximum temperature. The proposed framework splits the bivariate field into two components of “local climate” and “weather.” The local climate component is a linear model with spatially varying process coefficients capturing the annual cycle and yielding local climate estimates at all locations, not only those within the observation network. The weather component spatially correlates the bivariate simulations, whose matrix-valued covariance function we estimate using a nonparametric kernel smoother that retains nonnegative definiteness and allows for substantial nonstationarity across the simulation domain. The statistical model is augmented with a spatially varying nugget effect to allow for locally varying small scale variability. Our model is applied to a daily temperature data set covering the complex terrain of Colorado, USA, and successfully accommodates substantial temporally varying nonstationarity in both the direct-covariance and cross-covariance functions.

Article information

Source
Ann. Appl. Stat., Volume 7, Number 1 (2013), 588-612.

Dates
First available in Project Euclid: 9 April 2013

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1365527212

Digital Object Identifier
doi:10.1214/12-AOAS602

Mathematical Reviews number (MathSciNet)
MR3086432

Zentralblatt MATH identifier
06171285

Keywords
Complex terrain Gaussian process nonstationary minimum temperature maximum temperature multivariate covariance simulation stochastic weather generator

Citation

Kleiber, William; Katz, Richard W.; Rajagopalan, Balaji. Daily minimum and maximum temperature simulation over complex terrain. Ann. Appl. Stat. 7 (2013), no. 1, 588--612. doi:10.1214/12-AOAS602. https://projecteuclid.org/euclid.aoas/1365527212


Export citation

References

  • Ailliot, P., Thompson, C. and Thomson, P. (2009). Space–time modelling of precipitation by using a hidden Markov model and censored Gaussian distributions. J. R. Stat. Soc. Ser. C. Appl. Stat. 58 405–426.
  • Allcroft, D. J. and Glasbey, C. A. (2003). A latent Gaussian Markov random-field model for spatiotemporal rainfall disaggregation. J. Roy. Statist. Soc. Ser. C 52 487–498.
  • Apanasovich, T. V., Genton, M. G. and Sun, Y. (2012). A valid Matérn class of cross-covariance functions for multivariate random fields with any number of components. J. Amer. Statist. Assoc. 107 180–193.
  • Brown, P. E., Diggle, P. J., Lord, M. E. and Young, P. C. (2001). Space–time calibration of radar rainfall data. J. Roy. Statist. Soc. Ser. C 50 221–241.
  • Chandler, R. E. (2005). On the use of generalized linear models for interpreting climate variability. Environmetrics 16 699–715.
  • Christensen, W. F. (2011). Filtered kriging for spatial data with heterogeneous measurement error volumes. Biometrics 67 947–957.
  • Cressie, N. A. C. (1993). Statistics for Spatial Data, revised ed. Wiley, New York.
  • Daly, C., Neilson, R. P. and Phillips, D. L. (1994). A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology 33 140–158.
  • Durban, M. and Glasbey, C. A. (2001). Weather modelling using a multivariate latent Gaussian model. Agricultural and Forest Meteorology 109 187–201.
  • Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R. and Mearns, L. O. (2000). Climate extremes: Observations, modeling, and impacts. Science 289 2068–2074.
  • Fuentes, M. (2002). Spectral methods for nonstationary spatial processes. Biometrika 89 197–210.
  • Gelfand, A. E., Banerjee, S. and Gamerman, D. (2005). Spatial process modelling for univariate and multivariate dynamic spatial data. Environmetrics 16 465–479.
  • Gelfand, A. E., Kim, H.-J., Sirmans, C. F. and Banerjee, S. (2003). Spatial modeling with spatially varying coefficient processes. J. Amer. Statist. Assoc. 98 387–396.
  • Gelfand, A. E., Schmidt, A. M., Banerjee, S. and Sirmans, C. F. (2004). Nonstationary multivariate process modeling through spatially varying coregionalization. TEST 13 263–312.
  • Gneiting, T., Kleiber, W. and Schlather, M. (2010). Matérn cross-covariance functions for multivariate random fields. J. Amer. Statist. Assoc. 105 1167–1177.
  • Guillot, G., Senoussi, R. and Monestiez, P. (2001). A positive definite estimator of the non-stationary covariance of random fields. In GeoENV 2000: Third European Conference on Geostatistics for Environmental Applications (P. Monestiez, D. Allard and R. Froidevaux, eds.) Kluwer Academic, Dordrecht, Netherlands.
  • Guttorp, P. and Gneiting, T. (2006). Studies in the history of probability and statistics. XLIX. On the Matérn correlation family. Biometrika 93 989–995.
  • Haas, T. C. (1990). Lognormal and moving window methods of estimating acid deposition. J. Amer. Statist. Assoc. 85 950–963.
  • Higdon, D. (1998). A process-convolution approach to modelling temperatures in the North Atlantic Ocean. Environ. Ecol. Stat. 5 173–190.
  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25 1965–1978.
  • Hughes, J. P. and Guttorp, P. (1999). A non-homogeneous hidden Markov model for precipitation occurrence. Applied Statistics 48 15–30.
  • Hutchinson, M. F. (1995). Interpolating mean rainfall using thin plate smoothing splines. International Journal of Geographical Information Systems 9 385–403.
  • Johnson, G. L., Daly, C., Taylor, G. H. and Hanson, C. L. (2000). Spatial variability and interpolation of stochastic weather simulation model parameters. Journal of Applied Meteorology 39 778–795.
  • Jolliffe, I. T. and Hope, P. B. (1996). Bounded bivariate distributions with nearly normal marginals. Amer. Statist. 50 17–20.
  • Jones, M. C. and Larsen, P. V. (2004). Multivariate distributions with support above the diagonal. Biometrika 91 975–986.
  • Jun, M. (2011). Non-stationary cross-covariance models for multivariate processes on a globe. Scand. J. Stat. 38 726–747.
  • Jun, M., Szunyogh, I., Genton, M. G., Zhang, F. and Bishop, C. H. (2011). A statistical investigation of the sensitivity of ensemble-based Kalman filters to covariance filtering. Monthly Weather Review 139 3036–3051.
  • Kim, H.-M., Mallick, B. K. and Holmes, C. C. (2005). Analyzing nonstationary spatial data using piecewise Gaussian processes. J. Amer. Statist. Assoc. 100 653–668.
  • Kleiber, W. and Genton, M. G. (2013). Spatially varying cross-correlation coefficients in the presence of nugget effects. Biometrika 100 213–220.
  • Kleiber, W., Katz, R. W. and Rajagopalan, B. (2012). Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes. Water Resources Research 48.
  • Kleiber, W. and Nychka, D. (2012). Nonstationary modeling for multivariate spatial processes. J. Multivariate Anal. 112 76–91.
  • Kleiber, W., Raftery, A. E. and Gneiting, T. (2011). Geostatistical model averaging for locally calibrated probabilistic quantitative precipitation forecasting. J. Amer. Statist. Assoc. 106 1291–1303.
  • Kleiber, W., Raftery, A. E., Baars, J., Gneiting, T., Mass, C. F. and Grimit, E. (2011). Locally calibrated probabilistic temperature forecasting using geostatistical model averaging and local Bayesian model averaging. Monthly Weather Review 139 2630–2649.
  • Kustas, W. P., Rango, A. and Uijlenhoet, R. (1994). A simple energy budget algorithm for the snowmelt runoff model. Water Resources Research 30 1515–1527.
  • Lall, U. and Sharma, A. (1996). A nearest neighbor bootstrap for resampling hydrological time series. Water Resources Research 32 679–693.
  • Legates, D. R. and Willmott, C. J. (1990). Mean seasonal and spatial variability in global surface air temperature. Theoretical and Applied Climatology 41 11–21.
  • Oehlert, G. W. (1993). Regional trends in sulfate wet deposition. J. Amer. Statist. Assoc. 88 390–399.
  • Paciorek, C. J. and Schervish, M. J. (2006). Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 17 483–506.
  • Pepin, N. and Losleben, M. (2002). Climate change in the Colorado Rocky Mountains: Free air versus surface temperature trends. International Journal of Climatology 22 311–329.
  • Peterson, T. C. and Vose, R. S. (1997). An overview of the Global Historical Climatology Network temperature database. Bulletin of the American Meteorological Society 78 2837–2849.
  • Pintore, A. and Holmes, C. (2006). Spatially adaptive non-stationary covariance functions via spatially adaptive spectra. Unpublished manuscript.
  • Price, D. T., McKenney, D. W., Nalder, I. A., Hutchinson, M. F. and Kesteven, J. L. (2000). A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data. Agricultural and Forest Meteorology 101 81–94.
  • Racsko, P., Szeidl, L. and Semenov, M. (1991). A serial approach to local stochastic weather models. Ecological Modelling 57 27–41.
  • Rajagopalan, B. and Lall, U. (1999). A k-nearest neighbor simulator for daily precipitation and other weather variables. Water Resources Research 35 3089–3101.
  • Richardson, C. W. (1981). Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resources Research 17 182–190.
  • Running, S. W., Nemani, R. R. and Hungerford, R. D. (1987). Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis. Canadian Journal of Forest Research 17 472–483.
  • Sampson, P. D. and Guttorp, P. (1992). Nonparametric estimation of nonstationary spatial covariance structure. J. Amer. Statist. Assoc. 87 108–119.
  • Sansó, B. and Guenni, L. (2000). A nonstationary multisite model for rainfall. J. Amer. Statist. Assoc. 95 1089–1100.
  • Semenov, M. A. and Barrow, E. M. (1997). Use of a stochastic weather generator in the development of climate change scenarios. Climatic Change 35 397–414.
  • Shaddick, G. and Wakefield, J. (2002). Modelling daily multivariate pollutant data at multiple sites. J. Roy. Statist. Soc. Ser. C 51 351–372.
  • Sibuya, M. (1960). Bivariate extreme statistics. I. Ann. Inst. Statist. Math. Tokyo 11 195–210.
  • Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York.
  • Stroud, J. R., Müller, P. and Sansó, B. (2001). Dynamic models for spatiotemporal data. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 673–689.
  • Thornton, P. E., Running, S. W. and White, M. A. (1997). Generating surfaces of daily meteorological variables over large regions of complex terrain. Journal of Hydrology 190 214–251.
  • Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing. Monographs on Statistics and Applied Probability 60. Chapman & Hall, London.
  • Wilks, D. S. (1999). Simultaneous stochastic simulation of daily precipitation, temperature and solar radiation at multiple sites in complex terrain. Agricultural and Forest Meteorology 96 85–101.
  • Wilks, D. S. and Wilby, R. L. (1999). The weather generation game: A review of stochastic weather models. Progress in Physical Geography 23 329–357.
  • Willmott, C. J. and Matsuura, K. (1995). Smart interpolation of annually averaged air temperature in the United States. Journal of Applied Meteorology 34 2577–2586.