The Annals of Applied Statistics

Bayesian inference and the parametric bootstrap

Bradley Efron

Full-text: Open access


The parametric bootstrap can be used for the efficient computation of Bayes posterior distributions. Importance sampling formulas take on an easy form relating to the deviance in exponential families and are particularly simple starting from Jeffreys invariant prior. Because of the i.i.d. nature of bootstrap sampling, familiar formulas describe the computational accuracy of the Bayes estimates. Besides computational methods, the theory provides a connection between Bayesian and frequentist analysis. Efficient algorithms for the frequentist accuracy of Bayesian inferences are developed and demonstrated in a model selection example.

Article information

Ann. Appl. Stat., Volume 6, Number 4 (2012), 1971-1997.

First available in Project Euclid: 27 December 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Jeffreys prior exponential families deviance generalized linear models


Efron, Bradley. Bayesian inference and the parametric bootstrap. Ann. Appl. Stat. 6 (2012), no. 4, 1971--1997. doi:10.1214/12-AOAS571.

Export citation


  • Berger, J. (2006). The case for objective Bayesian analysis. Bayesian Anal. 1 385–402.
  • DiCiccio, T. and Efron, B. (1992). More accurate confidence intervals in exponential families. Biometrika 79 231–245.
  • DiCiccio, T. J. and Efron, B. (1996). Bootstrap confidence intervals. Statist. Sci. 11 189–228. With comments and a rejoinder by the authors.
  • Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. CBMS-NSF Regional Conference Series in Applied Mathematics 38. SIAM, Philadelphia, PA.
  • Efron, B. (1987). Better bootstrap confidence intervals. J. Amer. Statist. Assoc. 82 171–200. With comments and a rejoinder by the author.
  • Efron, B. (1992). Jackknife-after-bootstrap standard errors and influence functions. J. R. Stat. Soc. Ser. B Stat. Methodol. 54 83–127.
  • Efron, B. (2008). Microarrays, empirical Bayes and the two-groups model. Statist. Sci. 23 1–22.
  • Efron, B. (2010). Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction. Institute of Mathematical Statistics (IMS) Monographs 1. Cambridge Univ. Press, Cambridge.
  • Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability 57. Chapman & Hall, New York.
  • Efron, B. and Tibshirani, R. (1998). The problem of regions. Ann. Statist. 26 1687–1718.
  • Gelman, A., Meng, X.-L. and Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statist. Sinica 6 733–807. With comments and a rejoinder by the authors.
  • Ghosh, M. (2011). Objective priors: An introduction for frequentists. Statist. Sci. 26 187–202.
  • Johnson, N. L. and Kotz, S. (1970). Distributions in Statistics. Continuous Univariate Distributions. 2. Houghton, Boston, MA.
  • Kass, R. E. and Wasserman, L. (1996). The selection of prior distributions by formal rules. J. Amer. Statist. Assoc. 91 1343–1370.
  • Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. Academic Press, London.
  • Newton, M. A. and Raftery, A. E. (1994). Approximate Bayesian inference with the weighted likelihood bootstrap. J. R. Stat. Soc. Ser. B Stat. Methodol. 56 3–48. With discussion and a reply by the authors.
  • Rubin, D. B. (1981). The Bayesian bootstrap. Ann. Statist. 9 130–134.
  • Singh, D., Febbo, P. G., Ross, K., Jackson, D. G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A. A., D’Amico, A. V., Richie, J. P., Lander, E. S., Loda, M., Kantoff, P. W., Golub, T. R. and Sellers, W. R. (2002). Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1 203–209.
  • Smith, A. F. M. and Gelfand, A. E. (1992). Bayesian statistics without tears: A sampling-resampling perspective. Amer. Statist. 46 84–88.
  • Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika 76 604–608.
  • Tierney, L. and Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities. J. Amer. Statist. Assoc. 81 82–86.
  • Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihoods. J. R. Stat. Soc. Ser. B Stat. Methodol. 25 318–329.