Annals of Applied Statistics

Spatial analysis of wave direction data using wrapped Gaussian processes

Giovanna Jona-Lasinio, Alan Gelfand, and Mattia Jona-Lasinio

Full-text: Open access

Abstract

Directional data arise in various contexts such as oceanography (wave directions) and meteorology (wind directions), as well as with measurements on a periodic scale (weekdays, hours, etc.). Our contribution is to introduce a model-based approach to handle periodic data in the case of measurements taken at spatial locations, anticipating structured dependence between these measurements. We formulate a wrapped Gaussian spatial process model for this setting, induced from a customary linear Gaussian process.

We build a hierarchical model to handle this situation and show that the fitting of such a model is possible using standard Markov chain Monte Carlo methods. Our approach enables spatial interpolation (and can accommodate measurement error). We illustrate with a set of wave direction data from the Adriatic coast of Italy, generated through a complex computer model.

Article information

Source
Ann. Appl. Stat., Volume 6, Number 4 (2012), 1478-1498.

Dates
First available in Project Euclid: 27 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1356629048

Digital Object Identifier
doi:10.1214/12-AOAS576

Mathematical Reviews number (MathSciNet)
MR3058672

Zentralblatt MATH identifier
1257.62094

Keywords
Bayesian kriging Gaussian processes hierarchical model latent variables

Citation

Jona-Lasinio, Giovanna; Gelfand, Alan; Jona-Lasinio, Mattia. Spatial analysis of wave direction data using wrapped Gaussian processes. Ann. Appl. Stat. 6 (2012), no. 4, 1478--1498. doi:10.1214/12-AOAS576. https://projecteuclid.org/euclid.aoas/1356629048


Export citation

References

  • Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2004). Hierarchical Modeling and Analysis for Spatial Data. Chapman & Hall, London.
  • Bao, L., Gneiting, T., Grimit, E. P., Guttorp, P. and Raftery, A. E. (2010). Bias correction and Bayesian model averaging for ensemble forecasts of surface wind direction. Monthly Weather Review 138 1811–1821.
  • Breckling, J. (1989). The Analysis of Directional Time Series: Applications to Wind Speed and Direction. Lecture Notes in Statistics 61. Springer, Berlin.
  • Casson, E. and Coles, S. (1998). Extreme hurricane wind speeds: Estimation, extrapolation and spatial smoothing. Journal of Wind Engineering and Industrial Aerodynamics 74-76 131–140.
  • Coles, S. (1998). Inference for circular distributions and processes. Statist. Comput. 8 105–113.
  • Damien, P. and Walker, S. (1999). A full Bayesian analysis of circular data using the von Mises distribution. Canad. J. Statist. 27 291–298.
  • Downs, T. D. and Mardia, K. V. (2002). Circular regression. Biometrika 89 683–697.
  • Engel, C. and Ebert, E. (2007). Performance of hourly operational consensus forecasts (OCFs) in the Australian region. Weather and Forecasting 22 1345–1359.
  • Finley, A. O., Banerjee, S. and Carlin, B. P. (2007). spBayes: An R package for univariate and multivariate hierarchical point-referenced spatial models. Journal of Statistical Software 19 1–24.
  • Fisher, N. I. (1993). Statistical Analysis of Circular Data. Cambridge Univ. Press, Cambridge.
  • Fisher, N. I. and Lee, A. J. (1992). Regression models for an angular response. Biometrics 48 665–677.
  • Fisher, N. I. and Lee, A. J. (1994). Time series analysis of circular data. J. Roy. Statist. Soc. Ser. B 56 327–339.
  • Guttorp, P. and Lockhart, R. A. (1988). Finding the location of a signal: A Bayesian analysis. J. Amer. Statist. Assoc. 83 322–330.
  • Harrison, D. and Kanji, G. K. (1988). The development of analysis of variance for circular data. J. Appl. Stat. 15 197–224.
  • Heyde, C. C. and Leonenko, N. N. (2005). Student processes. Adv. in Appl. Probab. 37 342–365.
  • Holthuijsen, L. H. (2007). Waves in Oceanic and Coastal Waters. Cambridge Univ. Press, Cambridge.
  • Holzmann, H., Munk, A., Suster, M. and Zucchini, W. (2006). Hidden Markov models for circular and linear-circular time series. Environ. Ecol. Stat. 13 325–347.
  • Hughes, G. (2007). Multivariate and time series models for circular data with applications to protein conformational angles. Ph.D. thesis, Univ. Leeds, Leeds, England, UK.
  • Jammalamadaka, S. R. and Sarma, Y. R. (1988). A correlation coefficient for angular variables. In Statistical Theory and Data Analysis, II (Tokyo, 1986) 349–364. North-Holland, Amsterdam.
  • Jammalamadaka, S. R. and Sarma, Y. R. (1993). Circular regression. In Statistical Sciences and Data Analysis (K. Matusita, M. L. Puri and T. Hayakawa, eds.) 109–128. VSP, Utrecht.
  • Jammalamadaka, S. R. and SenGupta, A. (2001). Topics in Circular Statistics. World Scientific, Singapore.
  • Jona Lasinio, G., Orasi, A., Divino, F. and Conti, P. L. (2007). Statistical contributions to the analysis of environmental risks along the coastline. In Società Italiana di Statistica—Rischio e Previsione. Venezia, 68 Giugno 255–262. Società Italiana di Statistica, CLEUP, ISBN/ISSN: 978-88-6129-093-8.
  • Kalnay, E. (2002). Athmospheric Modeling, Data Assimilation and Predictability. Cambridge Univ. Press, Cambridge.
  • Kato, S. (2010). A Markov process for circular data. J. R. Stat. Soc. Ser. B Stat. Methodol. 72 655–672.
  • Kato, S., Shimizu, K. and Shieh, G. S. (2008). A circular–circular regression model. Statist. Sinica 18 633–645.
  • Kent, J. (1978). Limiting behaviour of the von Mises–Fisher distribution. Math. Proc. Cambridge Philos. Soc. 84 531–536.
  • Lee, A. J. (2010). Circular data. Wiley Interdisciplinary Reviews: Computational Statistics 2 477–486.
  • Mardia, K. V. (1972). Statistics of Directional Data. Academic Press, London.
  • Mardia, K. V. and Jupp, P. E. (2000). Directional Statistics. Wiley, Chichester.
  • Mardia, K. V., Taylor, C. C. and Subramaniam, G. K. (2007). Protein bioinformatics and mixtures of bivariate von Mises distributions for angular data. Biometrics 63 505–512.
  • Mardia, K. V., Hughes, G., Taylor, C. C. and Singh, H. (2008). A multivariate von Mises distribution with applications to bioinformatics. Canad. J. Statist. 36 99–109.
  • Ravindran, P. (2002). Bayesian analysis of circular data using wrapped distributions. Ph.D. thesis, North Carolina State Univ.
  • Stephens, M. A. (1963). Random walk on a circle. Biometrika 50 385–390.
  • Stephens, M. A. (1970). Use of the Kolmogorov–Smirnov, Cramer–von Mises and related statistics without extensive tables. J. Roy. Statist. Soc. Ser. B 32 115–122.
  • Watson, G. S. (1961). Goodness-of-fit tests on a circle. Biometrika 48 109–114.
  • Wilks, D. S. (2006). Comparison of ensemble-MOS methods in the Lorenz’96 setting. Meteorological Applications 13 243–256.
  • Zhang, H. (2004). Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. J. Amer. Statist. Assoc. 99 250–261.
  • Zhang, Z., Wu, G. and Chang, E. (2007). Semiparametric regression using Student $t$-processes. IEEE Transactions on Neural Networks 18 1572–1588.