Annals of Applied Statistics

A hierarchical max-stable spatial model for extreme precipitation

Brian J. Reich and Benjamin A. Shaby

Full-text: Open access

Abstract

Extreme environmental phenomena such as major precipitation events manifestly exhibit spatial dependence. Max-stable processes are a class of asymptotically-justified models that are capable of representing spatial dependence among extreme values. While these models satisfy modeling requirements, they are limited in their utility because their corresponding joint likelihoods are unknown for more than a trivial number of spatial locations, preventing, in particular, Bayesian analyses. In this paper, we propose a new random effects model to account for spatial dependence. We show that our specification of the random effect distribution leads to a max-stable process that has the popular Gaussian extreme value process (GEVP) as a limiting case. The proposed model is used to analyze the yearly maximum precipitation from a regional climate model.

Article information

Source
Ann. Appl. Stat., Volume 6, Number 4 (2012), 1430-1451.

Dates
First available in Project Euclid: 27 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1356629046

Digital Object Identifier
doi:10.1214/12-AOAS591

Mathematical Reviews number (MathSciNet)
MR3058670

Zentralblatt MATH identifier
1257.62120

Keywords
Gaussian extreme value process generalized extreme value distribution positive stable distribution regional climate model

Citation

Reich, Brian J.; Shaby, Benjamin A. A hierarchical max-stable spatial model for extreme precipitation. Ann. Appl. Stat. 6 (2012), no. 4, 1430--1451. doi:10.1214/12-AOAS591. https://projecteuclid.org/euclid.aoas/1356629046


Export citation

References

  • Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2004). Hierarchical Modeling and Analysis for Spatial Data. Chapman & Hall/CRC, London.
  • Banerjee, S., Gelfand, A. E., Finley, A. O. and Sang, H. (2008). Gaussian predictive process models for large spatial data sets. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 825–848.
  • Blanchet, J. and Davison, A. C. (2011). Spatial modeling of extreme snow depth. Ann. Appl. Stat. 5 1699–1725.
  • Buishand, T. A., de Haan, L. and Zhou, C. (2008). On spatial extremes: With application to a rainfall problem. Ann. Appl. Stat. 2 624–642.
  • Coles, S. G. (1993). Regional modelling of extreme storms via max-stable processes. J. Roy. Statist. Soc. Ser. B 55 797–816.
  • Cooley, D., Naveau, P. and Poncet, P. (2006). Variograms for spatial max-stable random fields. In Dependence in Probability and Statistics. Lecture Notes in Statist. 187 373–390. Springer, New York.
  • Cooley, D., Nychka, D. and Naveau, P. (2007). Bayesian spatial modeling of extreme precipitation return levels. J. Amer. Statist. Assoc. 102 824–840.
  • Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley, New York.
  • Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very large spatial data sets. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 209–226.
  • de Haan, L. (1984). A spectral representation for max-stable processes. Ann. Probab. 12 1194–1204.
  • de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer, New York.
  • Deheuvels, P. (1983). Point processes and multivariate extreme values. J. Multivariate Anal. 13 257–272.
  • Ehlert, A. and Schlather, M. (2008). Capturing the multivariate extremal index: Bounds and interconnections. Extremes 11 353–377.
  • Engelke, S., Kabluchko, Z. and Schlather, M. (2011). An equivalent representation of the Brown–Resnick process. Statist. Probab. Lett. 81 1150–1154.
  • Fougères, A.-L., Nolan, J. P. and Rootzén, H. (2009). Models for dependent extremes using stable mixtures. Scand. J. Stat. 36 42–59.
  • Fuentes, M., Henry, J. and Reich, B. J. (2012). Nonparametric spatial models for extremes: Applications to exterme temperature data. Extremes. To appear.
  • Gelfand, A. E., Diggle, P. J., Fuentes, M. and Guttorp, P., eds. (2010). Handbook of Spatial Statistics. CRC Press, Boca Raton, FL.
  • Genton, M. G., Ma, Y. and Sang, H. (2011). On the likelihood function of Gaussian max-stable processes. Biometrika 98 481–488.
  • Godambe, V. P. and Heyde, C. C. (1987). Quasi-likelihood and optimal estimation. Internat. Statist. Rev. 55 231–244.
  • Higdon, D., Swall, J. and Kern, J. (1999). Non-stationary spatial modeling. In Bayesian Statistics 6—Proceedings of the Sixth Valencia Meeting (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 761–768. Clarendon Press, Oxford.
  • Huser, R. and Davison, A. C. (2012). Space–time modelling of extreme events. Unpublished manuscript.
  • Kabluchko, Z., Schlather, M. and de Haan, L. (2009). Stationary max-stable fields associated to negative definite functions. Ann. Probab. 37 2042–2065.
  • Nakicenovic, N. et al. (2000). Special Report on Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge.
  • Oesting, M., Kabluchko, Z. and Schlather, M. (2012). Simulation of Brown–Resnick processes. Extremes 15 89–107.
  • Padoan, S. A., Ribatet, M. and Sisson, S. A. (2010). Likelihood-based inference for max-stable processes. J. Amer. Statist. Assoc. 105 263–277.
  • Pickands, J. (1981). Multivariate extreme value distributions. In Proceedings 43rd Session International Statistical Institute, Vol. 2 (Buenos Aires, 1981). Bull. Inst. Internat. Statist. 49 859–878, 894–902.
  • Reich, B. J. and Fuentes, M. (2012). Nonparametric Bayesian models for a spatial covariance. Stat. Methodol. 9 265–274.
  • Reich, B. J., Fuentes, M., Herring, A. H. and Evenson, K. R. (2010). Bayesian variable selection for multivariate spatially varying coefficient regression. Biometrics 66 772–782.
  • Resnick, S. I. (1987). Extreme Values, Regular Variation, and Point Processes. Applied Probability. A Series of the Applied Probability Trust 4. Springer, New York.
  • Ribatet, M., Cooley, D. and Davison, A. (2012). Bayesian inference from composite likelihoods, with an application to spatial extremes. Statist. Sinica 22 813–845.
  • Sang, H. and Gelfand, A. E. (2010). Continuous spatial process models for spatial extreme values. J. Agric. Biol. Environ. Stat. 15 49–65.
  • Schlather, M. (2002). Models for stationary max-stable random fields. Extremes 5 33–44.
  • Schlather, M. and Tawn, J. (2002). Inequalities for the extremal coefficients of multivariate extreme value distributions. Extremes 5 87–102.
  • Shaby, B. (2012). The open-faced sandwich adjustment for MCMC using estimating functions. Unpublished manuscript.
  • Smith, R. L. (1990). Max-stable processes and spatial extremes. Unpublished manuscript.
  • Smith, E. L. and Stephenson, A. G. (2009). An extended Gaussian max-stable process model for spatial extremes. J. Statist. Plann. Inference 139 1266–1275.
  • Stephenson, A. G. (2009). High-dimensional parametric modelling of multivariate extreme events. Aust. N. Z. J. Stat. 51 77–88.
  • Tawn, J. A. (1990). Modelling multivariate extreme value distributions. Biometrika 77 245–253.
  • Wang, Y. and Stoev, S. A. (2010a). Conditional sampling for max-stable random fields. Available at arXiv:1005.0312.
  • Wang, Y. and Stoev, S. A. (2010b). On the structure and representations of max-stable processes. Adv. in Appl. Probab. 42 855–877.
  • Zhang, Z. and Smith, R. L. (2010). On the estimation and application of max-stable processes. J. Statist. Plann. Inference 140 1135–1153.
  • Zheng, Y., Zhu, J. and Roy, A. (2010). Nonparametric Bayesian inference for the spectral density function of a random field. Biometrika 97 238–245.