The Annals of Applied Statistics

Investigating international new product diffusion speed: A semiparametric approach

Brian M. Hartman, Bani K. Mallick, and Debabrata Talukdar

Full-text: Open access

Abstract

Global marketing managers are interested in understanding the speed of the new product diffusion process and how the speed has changed in our ever more technologically advanced and global marketplace. Understanding the process allows firms to forecast the expected rate of return on their new products and develop effective marketing strategies. The most recent major study on this topic [Marketing Science 21 (2002) 97–114] investigated new product diffusions in the United States. We expand upon that study in three important ways. (1) Van den Bulte notes that a similar study is needed in the international context, especially in developing countries. Our study covers four new product diffusions across 31 developed and developing nations from 1980–2004. Our sample accounts for about 80% of the global economic output and 60% of the global population, allowing us to examine more general phenomena. (2) His model contains the implicit assumption that the diffusion speed parameter is constant throughout the diffusion life cycle of a product. Recognizing the likely effects on the speed parameter of recent changes in the marketplace, we model the parameter as a semiparametric function, allowing it the flexibility to change over time. (3) We perform a variable selection to determine that the number of internet users and the consumer price index are strongly associated with the speed of diffusion.

Article information

Source
Ann. Appl. Stat., Volume 6, Number 2 (2012), 625-651.

Dates
First available in Project Euclid: 11 June 2012

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1339419610

Digital Object Identifier
doi:10.1214/11-AOAS519

Mathematical Reviews number (MathSciNet)
MR2976485

Zentralblatt MATH identifier
1243.62149

Keywords
New product diffusion hierarchical Bayesian methods logistic diffusion

Citation

Hartman, Brian M.; Mallick, Bani K.; Talukdar, Debabrata. Investigating international new product diffusion speed: A semiparametric approach. Ann. Appl. Stat. 6 (2012), no. 2, 625--651. doi:10.1214/11-AOAS519. https://projecteuclid.org/euclid.aoas/1339419610


Export citation

References

  • Bass, F. M. (1969). A new product growth for model consumer durables. Management Science 15 215–227.
  • Blinder, A. S. (2000). The Internet and the New Economy. Brookings Institution, Washington, DC.
  • Chandrasekaran, D. and Tellis, G. J. (2007). A critical review of marketing research on diffusion of new products. In Review of Marketing Research, Vol. 3 (N. K. Malhotra, ed.) 39–80. M.E. Sharpe, Armonk, NY.
  • Chwelos, P. D., Berndt, E. R. and Cockburn, I. M. (2008). Faster, smaller, cheaper: An hedonic price analysis of PDAs. Applied Economics 40 2839–2856.
  • Clark, W. A. V., Freeman, H. E. and Hanssens, D. M. (1984). Opportunities for revitalizing stagnant markets: An analysis of household appliances. Journal of Product Innovation Management 1 242–254.
  • Congdon, P. (2006). Bayesian Statistical Modelling, 2nd ed. Wiley, Chichester.
  • Denison, D. G. T., Mallick, B. K. and Smith, A. F. M. (1998). Automatic Bayesian curve fitting. J. R. Stat. Soc. Ser. B Stat. Methodol. 60 333–350.
  • Denison, D. G. T., Holmes, C. C., Mallick, B. K. and Smith, A. F. M. (2002). Bayesian Methods for Nonlinear Classification and Regression. Wiley, Chichester.
  • DiMatteo, I., Genovese, C. R. and Kass, R. E. (2001). Bayesian curve-fitting with free-knot splines. Biometrika 88 1055–1071.
  • Dixon, R. (1980). Hybrid corn revisited. Econometrica: Journal of the Econometric Society 48 1451–1461.
  • Fisher, J. C. and Pry, R. H. (1971). A simple substitution model of technological change. Technological Forecasting and Social Change 3 75–88.
  • Friedman, T. L. and Wyman, O. (2005). The World Is Flat. Farrar, Straus and Giroux, New York.
  • George, E. I. and McCulloch, R. E. (1993). Variable selection via Gibbs sampling. J. Amer. Statist. Assoc. 88 881–889.
  • George, E. I. and McCulloch, R. E. (1997). Approaches for Bayesian variable selection. Statist. Sinica 7 339–374.
  • Gilpin, R. and Gilpin, J. M. (2001). Global Political Economy: Understanding the International Economic Order. Princeton Univ. Press, Princeton, NJ.
  • Golder, P. N. and Tellis, G. J. (1997). Will it ever fly? Modeling the takeoff of really new consumer durables. Marketing Science 16 256–270.
  • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 711–732.
  • Grübler, A. (1990). The Rise and Fall of Infrastructures. Physica-Verlag, Heidelberg.
  • Hartman, B. M., Mallick, B. K. and Talukdar, D. (2011). Supplement to “Investigating International New Product Diffusion Speed: A Semiparametric Approach.” DOI:10.1214/11-AOAS519SUPP.
  • Heaton, M. J. and Scott, J. G. (2010). Bayesian computation and the linear model. In Frontiers of Statistical Decision Making and Bayesian Analysis (M.-H. Chen, D. Dey, P. Mueller, D. Sun and K. Ye, eds.). Springer, New York.
  • Hofstede, G. (2001). Culture’s Consequences: Comparing Values, Behaviors, Institutions, and Organizations Across Nations. Sage Publications, Thousand Oaks CA.
  • Holmes, C. C. and Mallick, B. K. (2003). Generalized nonlinear modeling with multivariate free-knot regression splines. J. Amer. Statist. Assoc. 98 352–368.
  • Horsky, D. (1990). A diffusion model incorporating product benefits, price, income and information. Marketing Science 9 342–365.
  • Kass, R. E. and Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. J. Amer. Statist. Assoc. 90 928–934.
  • Kohli, R., Lehmann, D. R. and Pae, J. (1999). Extent and impact of incubation time in new product diffusion. Journal of Product Innovation Management 16 134–144.
  • Kuo, L. and Mallick, B. (1998). Variable selection for regression models. Sankhyā Ser. B 60 65–81.
  • Lawal, I. (2002). Science resources: Does the Internet make them cheaper, better? The Bottom Line: Managing Library Finances 15 116–124.
  • Liechty, M. W., Liechty, J. C. and Müller, P. (2009). The shadow prior. J. Comput. Graph. Statist. 18 368–383.
  • Merkle, R. C. (1998). Making smaller, faster, cheaper computers. Proceedings of the IEEE 86 2384–2386.
  • Peres, R., Muller, E. and Mahajan, V. (2010). Innovation diffusion and new product growth models: A critical review and research directions. International Journal of Research in Marketing 27 91–106.
  • Prensky, M. (2001). Digital natives, digital immigrants Part 1. On the Horizon 9 1–6.
  • Putsis, W. P., Balasubramanian, S., Kaplan, E. H. and Sen, S. K. (1997). Mixing behavior in cross-country diffusion. Marketing Science 16 354–369.
  • Ratchford, B. T., Talukdar, D. and Lee, M. S. (2007). The impact of the Internet on consumers’ use of information sources for automobiles: A re-inquiry. Journal of Consumer Research 34 111–119.
  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 583–639.
  • Sultan, F., Farley, J. U. and Lehmann, D. R. (1990). A meta-analysis of applications of diffusion models. Journal of Marketing Research 27 70–77.
  • Takada, H. and Jain, D. (1991). Cross-national analysis of diffusion of consumer durable goods in Pacific Rim countries. The Journal of Marketing 55 48–54.
  • Talukdar, D., Sudhir, K. and Ainslie, A. (2002). Investigating new product diffusion across products and countries. Marketing Science 21 97–114.
  • Van den Bulte, C. (2000). New product diffusion acceleration: Measurement and analysis. Marketing Science 19 366–380.
  • Van den Bulte, C. and Stremersch, S. (2004). Social contagion and income heterogeneity in new product diffusion: A meta-analytic test. Marketing Science 23 530–544.
  • Van Everdingen, Y. M., Aghina, W. B. and Fok, D. (2005). Forecasting cross-population innovation diffusion: A Bayesian approach. International Journal of Research in Marketing 22 293–308.
  • Wallstrom, G., Liebner, J. and Kass, R. E. (2008). An implementation of Bayesian adaptive regression splines (BARS) in C with S and R wrappers. Journal of Statistical Software 26 1.
  • World Bank (2010). World Development Indicators. Washington, DC.
  • Xie, J., Song, X. M., Sirbu, M. and Wang, Q. (1997). Kalman filter estimation of new product diffusion models. Journal of Marketing Research 34 378–393.

Supplemental materials