The Annals of Applied Statistics

A method for exploratory repeated-measures analysis applied to a breast-cancer screening study

Adam R. Brentnall, Stephen W. Duffy, Martin J. Crowder, Maureen G. C. Gillan, Susan M. Astley, Matthew G. Wallis, Jonathan James, Caroline R. M. Boggis, and Fiona J. Gilbert

Full-text: Open access

Abstract

When a model may be fitted separately to each individual statistical unit, inspection of the point estimates may help the statistician to understand between-individual variability and to identify possible relationships. However, some information will be lost in such an approach because estimation uncertainty is disregarded. We present a comparative method for exploratory repeated-measures analysis to complement the point estimates that was motivated by and is demonstrated by analysis of data from the CADET II breast-cancer screening study. The approach helped to flag up some unusual reader behavior, to assess differences in performance, and to identify potential random-effects models for further analysis.

Article information

Source
Ann. Appl. Stat., Volume 5, Number 4 (2011), 2448-2469.

Dates
First available in Project Euclid: 20 December 2011

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1324399602

Digital Object Identifier
doi:10.1214/11-AOAS481

Mathematical Reviews number (MathSciNet)
MR2907122

Zentralblatt MATH identifier
1234.62015

Keywords
Classification computer-aided detection (CAD) likelihood mammogram random effects

Citation

Brentnall, Adam R.; Duffy, Stephen W.; Crowder, Martin J.; Gillan, Maureen G. C.; Astley, Susan M.; Wallis, Matthew G.; James, Jonathan; Boggis, Caroline R. M.; Gilbert, Fiona J. A method for exploratory repeated-measures analysis applied to a breast-cancer screening study. Ann. Appl. Stat. 5 (2011), no. 4, 2448--2469. doi:10.1214/11-AOAS481. https://projecteuclid.org/euclid.aoas/1324399602


Export citation

References

  • Astley, S., Duffy, S., Boggis, C., Wilson, M., Barr, N., Beetles, U., Griffiths, M., Jain, A., Johnson, J., Roberts, R., Deans, H., Duncan, K., Iyengar, G., Agbaje, O., Griffiths, P., McGee, M., Gillan, M. and Gilbert, F. (2006). Mammography reading with computer-aided detection (CAD): Performance of different readers. In Digital Mammography, (S. Astley, M. Brady, C. Rose and R. Zwiggelaar, eds.). Lecture Notes in Computer Science 4046 97–104. Springer, Berlin.
  • Bowers, J. and Drake, K. W. (2005). EDA for HLM: Visualization when probabilistic inference fails. Political Analysis 13 301–326.
  • Brentnall, A. R., Crowder, M. J. and Hand, D. J. (2008). A statistical model for the temporal pattern of individual automated teller machine withdrawals. J. R. Stat. Soc. Ser. C. Appl. Stat. 57 43–59.
  • Brentnall, A. R., Crowder, M. J. and Hand, D. J. (2010). Predicting the amount individuals withdraw at cash machines using a random effects multinomial model. Stat. Model. 10 197–214.
  • Brentnall, A. R., Duffy, S. W., Crowder, M. J., Gillan, M. G., Astley, S. M., Wallis, M. G., James, J., Boggis, C. R. and Gilbert, F. J. (2011). Supplement to “A method for exploratory repeated-measures analysis applied to a breast-cancer screening study.” DOI:10.1214/11-AOAS481SUPP.
  • Buja, A., Cook, D., Hofmann, H., Lawrence, M., Lee, E.-K., Swayne, D. F. and Wickham, H. (2009). Statistical inference for exploratory data analysis and model diagnostics. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 367 4361–4383.
  • Crowder, M. J. and Hand, D. J. (1990). Analysis of Repeated Measures. Chapman & Hall, London.
  • Gelman, A. (2004). Exploratory data analysis for complex models. J. Comput. Graph. Statist. 13 755–787. With a discussion by Andreas Buja and a rejoinder by the author.
  • Gilbert, F. J., Astley, S. M., Gillan, M. G., Agbaje, O. F., Wallis, M. G., James, J., Boggis, C. R. and Duffy, S. W. (2008). Single reading with computer-aided detection for screening mammography. N. Engl. J. Med. 359 1675–1684.
  • Laird, N. (1978). Nonparametric maximum likelihood estimation of a mixing distribution. J. Amer. Statist. Assoc. 73 805–811.
  • LGDUW (2004). Presenting Data. Local Government Data Unit Wales, Cardiff, Wales.
  • Louis, T. A. and Zeger, S. L. (2009). Effective communication of standard errors and confidence intervals. Biostat. 10 1–2.
  • NHS Breast Screening Programme (2009). Breast screening: The facts. Available at http://www.cancerscreening.nhs.uk/breastscreen/publications.
  • Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70 41–55.
  • Self, S. G. and Liang, K. Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J. Amer. Statist. Assoc. 82 605–610.
  • Taylor, P. and Potts, H. (2008). Computer aids and human second reading as interventions in screening mammography: Two systematic reviews to compare effects on cancer detection and recall rate. European Journal of Cancer 44 798–807.

Supplemental materials