Annals of Applied Statistics

Gravitational Lensing Accuracy Testing 2010 (GREAT10) Challenge Handbook

Thomas Kitching, Adam Amara, Mandeep Gill, Stefan Harmeling, Catherine Heymans, Richard Massey, Barnaby Rowe, Tim Schrabback, Lisa Voigt, Sreekumar Balan, Gary Bernstein, Matthias Bethge, Sarah Bridle, Frederic Courbin, Marc Gentile, Alan Heavens, Michael Hirsch, Reshad Hosseini, Alina Kiessling, Donnacha Kirk, Konrad Kuijken, Rachel Mandelbaum, Baback Moghaddam, Guldariya Nurbaeva, Stephane Paulin-Henriksson, Anais Rassat, Jason Rhodes, Bernhard Schölkopf, John Shawe-Taylor, Marina Shmakova, Andy Taylor, Malin Velander, Ludovic van Waerbeke, Dugan Witherick, and David Wittman

Full-text: Open access


GRavitational lEnsing Accuracy Testing 2010 (GREAT10) is a public image analysis challenge aimed at the development of algorithms to analyze astronomical images. Specifically, the challenge is to measure varying image distortions in the presence of a variable convolution kernel, pixelization and noise. This is the second in a series of challenges set to the astronomy, computer science and statistics communities, providing a structured environment in which methods can be improved and tested in preparation for planned astronomical surveys. GREAT10 extends upon previous work by introducing variable fields into the challenge. The “Galaxy Challenge” involves the precise measurement of galaxy shape distortions, quantified locally by two parameters called shear, in the presence of a known convolution kernel. Crucially, the convolution kernel and the simulated gravitational lensing shape distortion both now vary as a function of position within the images, as is the case for real data. In addition, we introduce the “Star Challenge” that concerns the reconstruction of a variable convolution kernel, similar to that in a typical astronomical observation. This document details the GREAT10 Challenge for potential participants. Continually updated information is also available from

Article information

Ann. Appl. Stat., Volume 5, Number 3 (2011), 2231-2263.

First available in Project Euclid: 13 October 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Statistical inference imaging processing cosmology


Kitching, Thomas; Amara, Adam; Gill, Mandeep; Harmeling, Stefan; Heymans, Catherine; Massey, Richard; Rowe, Barnaby; Schrabback, Tim; Voigt, Lisa; Balan, Sreekumar; Bernstein, Gary; Bethge, Matthias; Bridle, Sarah; Courbin, Frederic; Gentile, Marc; Heavens, Alan; Hirsch, Michael; Hosseini, Reshad; Kiessling, Alina; Kirk, Donnacha; Kuijken, Konrad; Mandelbaum, Rachel; Moghaddam, Baback; Nurbaeva, Guldariya; Paulin-Henriksson, Stephane; Rassat, Anais; Rhodes, Jason; Schölkopf, Bernhard; Shawe-Taylor, John; Shmakova, Marina; Taylor, Andy; Velander, Malin; van Waerbeke, Ludovic; Witherick, Dugan; Wittman, David. Gravitational Lensing Accuracy Testing 2010 (GREAT10) Challenge Handbook. Ann. Appl. Stat. 5 (2011), no. 3, 2231--2263. doi:10.1214/11-AOAS484.

Export citation


  • Amara, A. and Réfrégier, A. (2008). Systematic bias in cosmic shear: Extending the Fisher matrix. Monthly Notices of the RAS 391 228–236.
  • Bardsley, J., Jeffries, S., Nagy, J. and Plemmons, B. (2006). A computational method for the restoration of images with an unknown, spatially-varying blur. Optics Express 14 1767–1782.
  • Bartelmann, M. and Schneider, P. (2001). Weak gravitational lensing. Physrep. 340 291–472.
  • Bergé, J., Pacaud, F., Réfrégier, A., Massey, R., Pierre, M., Amara, A., Birkinshaw, M., Paulin-Henriksson, S., Smith, G. P. and Willis, J. (2008). Combined analysis of weak lensing and X-ray blind surveys. Monthly Notices of the RAS 385 695–707.
  • Bernstein, G. M. (2010). Shape measurement biases from underfitting and ellipticity gradients. Available at
  • Bernstein, G. M. and Jarvis, M. (2002). Shapes and shears, stars and smears: Optimal measurements for weak lensing. Astrophysics Journal 123 583–618.
  • Bridle, S., Shawe-Taylor, J., Amara, A., Applegate, D., Balan, J. S. T. Berge, Bernstein, G., Dahle, H., Erben, T., Gill, M., Heavens, A., Heymans, C., High, F. W., Hoekstra, H., Jarvis, M., Kirk, D., Kitching, T., Kneib, J. P., Kuijken, K., Lagatutta, D., Mandelbaum, R., Massey, R., Mellier, Y., Moghaddam, B., Moudden, Y., Nakajima, R., Paulin-Henriksson, S., Pires, S., Rassat, A., Refregier, A., Rhodes, J., Schrabback, T., Semboloni, E., Shmakova, M., van Waerbeke, L., Witherick, D., Voigt, L. and Wittman, D. (2009). Handbook for the GREAT08 Challenge: An image analysis competition for cosmological lensing. Ann. Appl. Stat. 3 6–37.
  • Cho, S. and Lee, S. (2009). Fast Motion Deblurring. ACM Transactions on Graphics (SIGGRAPH ASIA 2009) 28 Art. 145.
  • Cressie, N. (1991). Statistics for Spatial Data. Wiley, New York.
  • Crittenden, R. G., Natarajan, P., Pen, U. L. and Theuns, T. (2002). Discriminating weak lensing from intrinsic spin correlations using the curl-gradient decomposition. Astrophysical J. 568 20–27.
  • Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T. and Freeman, W. T. (2006). Removing camera shake from a single image. In ACM Transactions on Graphics (SIGGRAPH). ACM.
  • Fu, L., Semboloni, E., Hoekstra, H., Kilbinger, M., van Waerbeke, L., Tereno, I., Mellier, Y., Heymans, C., Coupon, J., Benabed, K., Benjamin, J., Bertin, E., Doré, O., Hudson, M. J., Ilbert, O., Maoli, R., Marmo, C., McCracken, H. J. and Ménard, B. (2008). Very weak lensing in the CFHTLS wide: Cosmology from cosmic shear in the linear regime. Astronomy and Astrophysics Proceedings 479 9–25.
  • Goldberg, D. M. and Bacon, D. J. (2005). Galaxy–galaxy flexion: Weak lensing to second order. Astrophysical J. 619 741–748.
  • Gruen, D., Seitz, S., Koppenhoefer, J. and Riffeser, A. (2010). Bias-free shear estimation using artificial neural networks. Available at
  • Harmeling, S., Hirsch, M., Sra, S. and Schölkopf, B. (2009). Online blind image deconvolution for astronomy. In Proceedings of the IEEE Conference on Comp. Photogr.
  • Heymans, C., Van Waerbeke, L., Bacon, D., Berge, J., Bernstein, G., Bertin, E., Bridle, S., Brown, M. L., Clowe, D., Dahle, H., Erben, T., Gray, M., Hetterscheidt, M., Hoekstra, H., Hudelot, P., Jarvis, M., Kuijken, K., Margoniner, V., Massey, R., Mellier, Y., Nakajima, R., Refregier, A., Rhodes, J., Schrabback, T. and Wittman, D. (2006). The Shear Testing Programme—I. Weak lensing analysis of simulated ground-based observations. Monthly Notices of the RAS 368 1323–1339.
  • Hirsch, M., Sra, S., Schölkopf, B. and Harmeling, S. (2010). Efficient filter flow for space-variant multiframe blind deconvolution. In IEEE Computer Vision and Pattern Recognition.
  • Hosseini, R. and Bethge, M. (2009). Max planck institute for biological cybernetics technical report.
  • Jarvis, M. and Jain, B. (2004). Principal component analysis of PSF variation in weak lensing surveys. Available at
  • Jarvis, M., Schechter, P. and Jain, B. (2008). Telescope optics and weak lensing: PSF patterns due to low order aberrations. Available at
  • Kalirai, J. S., Fahlman, G. G., Richer, H. B. and Ventura, P. (2003). The CFHT open star cluster survey. IV. Two rich, young open star clusters: NGC 2168 (M35) and NGC 2323 (M50). Astrophysics Journal 126 1402–1414.
  • Kitching, T. D., Miller, L., Heymans, C. E., van Waerbeke, L. and Heavens, A. F. (2008). Bayesian galaxy shape measurement for weak lensing surveys—II. Application to simulations. Monthly Notices of the RAS 390 149–167.
  • Knox, K. T. and Thompson, B. J. (1974). Recovery of images from atmospherically degraded short-exposure photographs. Astrophysical J. 193 L45–L48.
  • Kuijken, K. (2006). GaaP: PSF- and aperture-matched photometry using shapelets. Available at
  • Kundur, D. and Hatzinakos, D. (1996). Blind image deconvolution. IEEE Signal Processing Mag. 13 43–64.
  • Labeyrie, A. (1970). Attainment of diffraction limited resolution in large telescopes by fourier analysing speckle patterns in star images. Astron. Astrophys. 6 85–87.
  • Massey, R. and Refregier, A. (2005). Polar shapelets. Monthly Notices of the RAS 363 197–210.
  • Massey, R., Heymans, C., Bergé, J., Bernstein, G., Bridle, S., Clowe, D., Dahle, H., Ellis, R., Erben, T., Hetterscheidt, M., High, F. W., Hirata, C., Hoekstra, H., Hudelot, P., Jarvis, M., Johnston, D., Kuijken, K., Margoniner, V., Mandelbaum, R., Mellier, Y., Nakajima, R., Paulin-Henriksson, S., Peeples, M., Roat, C., Refregier, A., Rhodes, J., Schrabback, T., Schirmer, M., Seljak, U., Semboloni, E. and van Waerbeke, L. (2007). The shear testing programme 2: Factors affecting high-precision weak-lensing analyses. Monthly Notices of the RAS 376 13–38.
  • Melchior, P., Viola, M., Schäfer, B. M. and Bartelmann, M. (2010). Weak gravitational lensing with DEIMOS. Available at
  • Miller, L., Kitching, T. D., Heymans, C., Heavens, A. F. and van Waerbeke, L. (2007). Bayesian galaxy shape measurement for weak lensing surveys—I. Methodology and a fast-fitting algorithm. Monthly Notices of the RAS 382 315–324.
  • Nagy, J. G. and O’Leary, D. P. (1998). Restoring images degraded by spatially variant blur. SIAM J. Sci. Comput. 19 1063–1082.
  • Paulin-Henriksson, S., Refregier, A. and Amara, A. (2009). Optimal point spread function modeling for weak lensing: Complexity and sparsity. Astronomy and Astrophysics Proceedings 500 647–655.
  • Paulin-Henriksson, S., Amara, A., Voigt, L., Refregier, A. and Bridle, S. L. (2008). Point spread function calibration requirements for dark energy from cosmic shear. Astronomy and Astrophysics Proceedings 484 67–77.
  • Refregier, A. (2003). Weak gravitational lensing by large-scale structure. Araa 41 645–668.
  • Rhodes, J. D., Massey, R. J., Albert, J., Collins, N., Ellis, R. S., Heymans, C., Gardner, J. P., Kneib, J. P., Koekemoer, A., Leauthaud, A., Mellier, Y., Refregier, A., Taylor, J. E. and Van Waerbeke, L. (2007). The stability of the point-spread function of the advanced camera for surveys on the hubble space telescope and implications for weak gravitational lensing. Astrophysical J. Supplement 172 203–218.
  • Rowe, B. (2010). Improving PSF modelling for weak gravitational lensing using new methods in model selection. Monthly Notices of the RAS 404 350–366.
  • Schneider, P., van Waerbeke, L., Kilbinger, M. and Mellier, Y. (2002). Analysis of two-point statistics of cosmic shear. I. Estimators and covariances. Astronomy and Astrophysics Proceedings 396 1–19.
  • Schölkopf, B., Smola, A. and Müller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10 1299–1319.
  • Schrabback, T., Hartlap, J., Joachimi, B., Kilbinger, M., Simon, P., Benabed, K., Bradač, M., Eifler, T., Erben, T., Fassnacht, C. D., High, F. W., Hilbert, S., Hildebrandt, H., Hoekstra, H., Kuijken, K., Marshall, P. J., Mellier, Y., Morganson, E., Schneider, P., Semboloni, E., van Waerbeke, L. and Velander, M. (2010). Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS. Astronomy and Astrophysics Proceedings 516 A63+.
  • Schulz, T. J. (1993). Multiframe blind deconvolution of astronomical images. J. Opt. Soc. Amer. A 10 1064–1073.
  • Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge Univ. Press, Cambridge.
  • Van Waerbeke, L., Mellier, Y. and Hoekstra, H. (2005). Dealing with systematics in cosmic shear studies: New results from the VIRMOS-Descart survey. Astronomy and Astrophysics Proceedings 429 75–84.
  • Zhang, J. (2010). Ideal cosmic shear estimators do not exist. Available at