Annals of Applied Statistics

Lambert W random variables—a new family of generalized skewed distributions with applications to risk estimation

Georg M. Goerg

Full-text: Open access

Abstract

Originating from a system theory and an input/output point of view, I introduce a new class of generalized distributions. A parametric nonlinear transformation converts a random variable X into a so-called Lambert W random variable Y, which allows a very flexible approach to model skewed data. Its shape depends on the shape of X and a skewness parameter γ. In particular, for symmetric X and nonzero γ the output Y is skewed. Its distribution and density function are particular variants of their input counterparts. Maximum likelihood and method of moments estimators are presented, and simulations show that in the symmetric case additional estimation of γ does not affect the quality of other parameter estimates. Applications in finance and biomedicine show the relevance of this class of distributions, which is particularly useful for slightly skewed data. A practical by-result of the Lambert W framework: data can be “unskewed.”

The R package LambertW developed by the author is publicly available (CRAN).

Article information

Source
Ann. Appl. Stat., Volume 5, Number 3 (2011), 2197-2230.

Dates
First available in Project Euclid: 13 October 2011

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1318514301

Digital Object Identifier
doi:10.1214/11-AOAS457

Mathematical Reviews number (MathSciNet)
MR2884937

Zentralblatt MATH identifier
1228.62016

Keywords
Family of skewed distributions skewness transformation of random variables Lambert W latent variables stylized facts of asset returns value at risk GARCH

Citation

Goerg, Georg M. Lambert W random variables—a new family of generalized skewed distributions with applications to risk estimation. Ann. Appl. Stat. 5 (2011), no. 3, 2197--2230. doi:10.1214/11-AOAS457. https://projecteuclid.org/euclid.aoas/1318514301


Export citation

References

  • Arellano-Valle, R. B. and Azzalini, A. (2006). On the unification of families of skew normal distributions. Scand. J. Stat. 33 561–574.
  • Arnold, B. C. and Beaver, R. J. (2000). The skew-Cauchy distribution. Statist. Probab. Lett. 49 285–290.
  • Azzalini, A. (1985). A class of distributions which includes the normal ones. Scand. J. Stat. 12 171–178.
  • Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew normal distributions. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 579–602.
  • Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution. J. Roy. Statist. Soc. Ser. B 65 367–389.
  • Azzalini, A. and Dalla-Valle, A. (1996). The multivariate skew-normal distribution. Biometrika 83 715–726.
  • Bauwens, L. and Laurent, S. (2005). A new class of multivariate skew densities, with application to generalized autoregressive conditional heteroscedasticity models. J. Bus. Econom. Statist. 23 346–354.
  • Behboodian, J., Jamalizadeh, A. and Balakrishnan, N. (2006). A new class of skew-Cauchy distributions. Statist. Probab. Lett. 76 1488–1493.
  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31 307–327.
  • Breidt, J. and Carriquiry, A. L. (1995). Improved quasi-maximum likelihood estimation for stochastic volatility models. In Modelling and Prediction: Honoring Seymour Geisser. Springer, New York.
  • Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quant. Finance 1 223–236.
  • Corless, R. M., Gonnet, G. H., Hare, D. E. G. and Jeffrey, D. J. (1996). On the Lambert W function. Adv. Comput. Math. 5 329–359.
  • Deo, R., Hurvich, C. and Lu, Y. (2006). Forecasting realized volatility using a long memory stochastic volatility model: Estimation, prediction and seasonal adjustment. J. Econometrics 131 29–58.
  • Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50 987–1007.
  • Field, C. A. (2004). Using the gh distribution to model extreme wind speeds. J. Statist. Plann. Inference 122 15–22.
  • Fischer, M. (2006). Generalized Tukey-type distributions with application to financial and teletraffic data. Available at http://econpapers.repec.org/RePEc:zbw:faucse:722006.
  • French, K. R., Schwert, G. W. and Stambaugh, R. F. (1987). Expected stock returns and volatility. Journal of Financial Economics 19 3–29.
  • Genton, M. G. (2005). Discussion of “The skew-normal.” Scand. J. Statist. 32 189–198.
  • Glen, A. G., Leemis, L. and Drew, J. H. (1997). A generalized univariate change-of-variable transformation technique. INFORMS J. Comput. 9 288–295.
  • Goerg, G. M. (2011). The Lambert Way to Gaussianize skewed, heavy tailed data with the inverse of Tukey’s h transformation as a special case. Unpublished manuscript. Available at http://arxiv.org/abs/1010.2265.
  • Melino, A. and Turnbull, S. M. (1990). Pricing foreign currency options with stochastic volatility. J. Econometrics 45 239–265.
  • Nelson, D. B. (1990). Stationarity and persistence in the GARCH(1, 1) model. Econometric Theory 6 318–334.
  • R Development Core Team (2008). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at http://www.R-project.org.
  • Rosenlicht, M. (1969). On the explicit solvability of certain transcendental equations. Inst. Hautes Études Sci. Publ. Math. 36 15–22.
  • Thode, H. C., Jr. (2002). Testing for Normality. Statistics: Textbooks and Monographs 164. Dekker, New York.
  • Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley, Reading.
  • Valluri, S. R., Jeffrey, D. J. and Corless, R. M. (2000). Some applications of the Lambert W function to physics. Canad. J. Phys. 78 823–831.
  • Weiss, M. S. (1978). Modification of the Kolmogorov–Smirnov statistic for use with correlated data. J. Amer. Statist. Assoc. 73 872–875.
  • Yan, J. (2005). Asymmetry, fat-tail, and autoregressive conditional density in financial return data with systems of frequency curves. Available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.76.2741.