The Annals of Applied Statistics

A nonstationary nonparametric Bayesian approach to dynamically modeling effective connectivity in functional magnetic resonance imaging experiments

Sourabh Bhattacharya and Ranjan Maitra

Full-text: Open access

Abstract

Effective connectivity analysis provides an understanding of the functional organization of the brain by studying how activated regions influence one other. We propose a nonparametric Bayesian approach to model effective connectivity assuming a dynamic nonstationary neuronal system. Our approach uses the Dirichlet process to specify an appropriate (most plausible according to our prior beliefs) dynamic model as the “expectation” of a set of plausible models upon which we assign a probability distribution. This addresses model uncertainty associated with dynamic effective connectivity. We derive a Gibbs sampling approach to sample from the joint (and marginal) posterior distributions of the unknowns. Results on simulation experiments demonstrate our model to be flexible and a better candidate in many situations. We also used our approach to analyzing functional Magnetic Resonance Imaging (fMRI) data on a Stroop task: our analysis provided new insight into the mechanism by which an individual brain distinguishes and learns about shapes of objects.

Article information

Source
Ann. Appl. Stat., Volume 5, Number 2B (2011), 1183-1206.

Dates
First available in Project Euclid: 13 July 2011

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1310562718

Digital Object Identifier
doi:10.1214/11-AOAS470

Mathematical Reviews number (MathSciNet)
MR2849771

Zentralblatt MATH identifier
1223.62011

Keywords
Attentional control network Bayesian analysis Dirichlet process effective connectivity analysis fMRI Gibbs sampling temporal correlation

Citation

Bhattacharya, Sourabh; Maitra, Ranjan. A nonstationary nonparametric Bayesian approach to dynamically modeling effective connectivity in functional magnetic resonance imaging experiments. Ann. Appl. Stat. 5 (2011), no. 2B, 1183--1206. doi:10.1214/11-AOAS470. https://projecteuclid.org/euclid.aoas/1310562718


Export citation

References

  • Aertsen, A. and Preißl, H. (1991). Dynamics of activity and connectivity in physiological neuronal networks. In Non-linear Dynamics and Neuronal Networks ( H. G. Schuster, ed.) 281–302. VCH, New York.
  • Banach, M. T., Milham, M. P., Atchley, R., Cohen, N. J., Webb, A., Wszalek, T., Kramer, A. F., Liang, Z. P., Wright, A., Shenker, J. and Magin, R. (2000). fMRI studies of Stroop tasks reveal unique roles of nterior and posterior brain systems in attentional selection. Journal of Cognitive Neuroscience 12 988–1000.
  • Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. Springer, New York.
  • Bhattacharya, S., Ho, M. R. and Purkayastha, S. (2006). A Bayesian approach to modeling dynamic effective connectivity with fMRI data. NeuroImage 30 794–812.
  • Bhattacharya, S. and Maitra, R. (2011). Supplement to “A nonstationary nonparametric Bayesian approach to dynamically modeling effective connectivity in functional magnetic resonance imaging experiments.” DOI:10.1214/11-AOAS470SUPP.
  • Büchel, C. and Friston, K. J. (1998). Dynamic changes in effective connectivity characterized by variable parameter regression and Kalman filtering. Human Brain Mapping 6 403–408.
  • Buxton, R. B., Wong, E. C. and Frank, L. R. (1998). Dynamics of blood flow and oxygenation changes during brain activation: The balloon model. Magnetic Resonance in Medicine 39 855–864.
  • Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L. and Petersen, S. E. (1991). Selective and divided attention during visual distrimination of shape, color and speed: Functional anatomy by positron emission tomography. Journal of Neuroscience 8 2383–2402.
  • De Iorio, M., Müller, P., Rosner, G. L. and MacEachern, S. N. (2004). An ANOVA model for dependent random measures. J. Amer. Statist. Assoc. 99 205–215.
  • Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures. J. Amer. Statist. Assoc. 90 577–588.
  • Friston, K. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping 2 56–78.
  • Friston, K. J. (2011). Dynamic causal modeling and Granger causality Comments on: The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution. NeuroImage. To appear.
  • Friston, K. J., Harrison, L. and Penny, W. (2003). Dynamic causal modeling. Neuroimage 19 1273–1302.
  • Friston, K. J., Mechelli, A., Turner, R. and Price, C. J. (2000). Nonlinear responses in fMRI: The Balloon model, Volterra kernels, and other hemodynamics. Neuroimage 12 466–477.
  • Frith, C. (2001). A framework for studying the neural basis of attention. Neuropsychologia 39 167–1371.
  • Gelfand, A. E., Kottas, A. and MacEachern, S. N. (2005). Bayesian nonparametric spatial modeling with Dirichlet process mixing. J. Amer. Statist. Assoc. 100 1021–1035.
  • Glover, G. (1999). Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage 9 416–429.
  • Goebel, R., Roebroeck, A., Kim, D. S. and Formisano, E. (2003). Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magnetic Resonance Imaging 21 1251–1261.
  • Gössl, C., Auer, D. P. and Fahrmeir, L. (2001). Bayesian spatiotemporal inference in functional magnetic resonance imaging. Biometrics 57 554–562.
  • Harrison, L., Penny, W. L. and Friston, K. (2003). Multivariate autoregressive modeling of fMRI time series. Neuroimage 19 1477–1491.
  • Harrison, L., Stephan, K. E. and Friston, K. J. (2007). Effective connectivity. In Statistical Parametric Mapping: The Analysis of Functional Brain Images 508–521. Academic Press, New York.
  • Henson, R. and Friston, K. J. (2007). Convolution models for fMRI. In Statistical Parametric Mapping: The Analysis of Functional Brain Images 178–192. Academic Press, New York.
  • Ho, M. R., Ombao, H. and Shumway, R. (2003). Practice-related effects demonstrate complementary role of anterior cingulate and prefrontal cortices in attentional control. NeuroImage 18 483–493.
  • Ho, M. R., Ombao, H. and Shumway, R. (2005). A state-space approach to modelling brain dynamics. Statist. Sinica 15 407–425.
  • Jaensch, E. R. (1929). Grundformen Menschlichen Seins. Otto Elsner, Berlin.
  • Kass, R. E. and Raftery, R. E. (1995). Bayes factors. J. Amer. Statist. Assoc. 90 773–795.
  • Kelley, W. M., Miezin, F. M., McDermott, K. B., Buckner, R. L., Raichle, M. E., Cohen, N. J., Ollinger, J. M., Akbudak, E., Conturo, T. E., Snyder, A. Z. and Petersen, S. E. (1998). Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding. Neuron 20 927–936.
  • Kirk, E., Ho, M. R., Colcombe, S. J. and Kramer, A. F. (2005). A structural equation modeling analysis of attentional control: An event-related fMRI study. Cognitive Brain Research 22 349–357.
  • Lathauwer, L. D., Moor, B. D. and Vandewalle, J. (2000). A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21 1253–1278.
  • Lindquist, M. A. (2008). The statistical analysis of fMRI data. Statist. Sci. 23 439–464.
  • Lu, Y., Bagshaw, A. P., Grova, C., Kobayashi, E., Dubeau, F. and Gotman, J. (2006). Using voxel-specific hemodynamic response function in EEG-fMRI data analysis. Neuroimage 32 238–247.
  • Lu, Y., Bagshaw, A. P., Grova, C., Kobayashi, E., Dubeau, F. and Gotman, J. (2007). Using voxel-specific hemodynamic response function in EEG-fMRI data analysis: An estimation and detection model. Neuroimage 34 195–203.
  • MacEachern, S. N. (1994). Estimating normal means with a conjugate-style Dirichlet process prior. Comm. Statist. Simulation Comput. 23 727–741.
  • MacEachern, S. N. (2000). Dependent Dirichlet processes. Technical report, Dept. Statistics, Ohio State Univ., Columbus, OH.
  • Marchini, J. L. and Ripley, B. D. (2000). A new statistical approach to detecting significant activation in functional MRI. NeuroImage 12 366–380.
  • McIntosh, A. R. (2000). Towards a network theory of cognition. Neural Networks 13 861–870.
  • McIntosh, A. R. and Gonzalez-Lima, F. (1994). Structural equation modeling and its application to network analysis of functional brain imaging. Human Brain Mapping 2 2–22.
  • Milham, M. P., Banich, M. T. and Barad, V. (2003). Competition for priority in processing increases prefrontal cortex’s involvement in top-down control: An event-related fMRI study of the Stroop task. Cognitive Brain Research 17 212–222.
  • Milham, M. P., Erickson, K. I., Banich, M. T., Kramer, A. F., Webb, A., Wszalek, T. and Cohen, N. J. (2002). Attentional control in the aging brain: Insights from an fMRI study of the Stroop task. Brain Cognition 49 277–296.
  • Milham, M. P., Banich, M. T., Claus, E. and Cohen, N. (2003). Practice-related effects demonstrate complementary role of anterior cingulate and prefrontal cortices in attentional control. Neuroimage 18 483–493.
  • Nyberg, L. and McIntosh, A. R. (2001). Functional neuroimaging: Network analysis. In Handbook of Functional Neuroimaging of Cognition ( R. Cabeza and A. Kingstone, eds.) 49–72. MIT Press, Cambridge, MA.
  • Patriota, A. G., Sato, J. R. and Achic, B. G. B. (2010). Vector autoregressive models with measurement errors for testing Granger causality. Stat. Methodol. 7 478–497.
  • Penny, W. D., Stephan, K. E., Mechelli, A. and Friston, K. J. (2004). Modeling functional integration: A comparison of structural equation and dynamic causal models. Neuroimage 23 (Suppl. 1) 264–274.
  • Rykhlevskaia, E., Fabiani, M. and Gratton, G. (2006). Lagged covariance structure models for studying functional connectivity in the brain. Neuroimage 30 1203–1218.
  • Sato, J. R., Morrettin, P. A., Arantes, P. R. and Amaro Jr., E. (2007). Wavelet-based time-varying vector autoregressive modeling. Neuroimage 51 5847–5866.
  • Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statist. Sinica 4 639–650.
  • Shumway, R. H. and Stoffer, D. S. (2006). Time Series Analysis and Its Applications With R Examples. Springer, New York.
  • Stephan, K. E., Weiskopf, N., Drysdale, P. M., Robinson, P. A. and Friston, K. J. (2007). Comparing hemodynamic models with DCM. Neuroimage 38 387–401.
  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology 18 643–662.
  • Thompson, W. K. and Siegle, G. (2009). A stimulus-locked vector autoregressive model. Neuroimage 46 739–748.
  • Worsley, K. J., Liao, C. H., Aston, J., Petre, V., Duncan, G. H., Morales, F. and Evans, A. C. (2002). A general statistical analysis for fMRI data. Neuroimage 15 1–15.

Supplemental materials

  • Supplementary material: Contents. Section S-1 contains additional details regarding our methodology, including explicit forms of the full conditional distributions of specific parameters, the configuration indicators and the distinct parameters associated with the Dirichlet process needed for Gibbs sampling. Detailed arguments that show model averaging associated with our DP-based model M_DP are also presented there. Section S-2 provides additional information on our simulation experiments, including associated methodology and results. Section S-3 presents further details on the analysis of the Stroop task experiment, including display of the data, detailed assessment of convergence of our MCMC samplers when using M_DP and M_DP^(1) and MCMC-based posterior analysis using M_AR and other additional models obtained by setting some effective connectivity parameters to zero. Additional methodological details and results regarding the smoothing of the modeled BOLD signal x(⋅) are also presented there.