The Annals of Applied Statistics

The generalized shrinkage estimator for the analysis of functional connectivity of brain signals

Mark Fiecas and Hernando Ombao

Full-text: Open access

Abstract

We develop a new statistical method for estimating functional connectivity between neurophysiological signals represented by a multivariate time series. We use partial coherence as the measure of functional connectivity. Partial coherence identifies the frequency bands that drive the direct linear association between any pair of channels. To estimate partial coherence, one would first need an estimate of the spectral density matrix of the multivariate time series. Parametric estimators of the spectral density matrix provide good frequency resolution but could be sensitive when the parametric model is misspecified. Smoothing-based nonparametric estimators are robust to model misspecification and are consistent but may have poor frequency resolution. In this work, we develop the generalized shrinkage estimator, which is a weighted average of a parametric estimator and a nonparametric estimator. The optimal weights are frequency-specific and derived under the quadratic risk criterion so that the estimator, either the parametric estimator or the nonparametric estimator, that performs better at a particular frequency receives heavier weight. We validate the proposed estimator in a simulation study and apply it on electroencephalogram recordings from a visual-motor experiment.

Article information

Source
Ann. Appl. Stat., Volume 5, Number 2A (2011), 1102-1125.

Dates
First available in Project Euclid: 13 July 2011

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1310562218

Digital Object Identifier
doi:10.1214/10-AOAS396

Mathematical Reviews number (MathSciNet)
MR2840188

Zentralblatt MATH identifier
1232.62147

Keywords
Multivariate time series periodogram matrix shrinkage spectral density matrix vector autoregressive model

Citation

Fiecas, Mark; Ombao, Hernando. The generalized shrinkage estimator for the analysis of functional connectivity of brain signals. Ann. Appl. Stat. 5 (2011), no. 2A, 1102--1125. doi:10.1214/10-AOAS396. https://projecteuclid.org/euclid.aoas/1310562218


Export citation

References

  • Bédard, P. and Sanes, J. (2009). Gaze and hand position effects on finger-movement-related human brain activation. J. Neurophysiol. 101 834–842.
  • Böhm, H., Ombao, H., von Sachs, R. and Sanes, J. (2010). Classification of multivariate non-stationary signals: The SLEX-shrinkage approach. J. Statist. Plann. Inference 3754–3763.
  • Böhm, H. and von Sachs, R. (2008). Structural shrinkage of nonparametric spectral estimators for multivariate time series. Electron. J. Statist. 2 696–721.
  • Böhm, H. and von Sachs, R. (2009). Shrinkage estimation in the frequency domain of multivariate time series. J. Multivariate Anal. 100 913–935.
  • Brillinger, D. (2001). Time Series: Data Analysis and Theory. SIAM, Philadelphia, PA.
  • Brockwell, P. and Davis, R. (1998). Time Series: Theory and Methods. Springer, New York.
  • Dahlhaus, R. (2000). Graphical interaction models for multivariate time series. Metrika 51 157–172.
  • Dahlhaus, R., Eichler, M. and Sandkühler, J. (1997). Identification of synaptic connections in neural ensembles by graphical models. J. Neurosci. Methods 77 93–107.
  • Eichler, M. (2005). A graphical approach for evaluating effective connectivity in neural systems. Philos. Trans. Roy. Soc. B 360 953–967.
  • Eichler, M., Dahlhaus, R. and Sandkühler, J. (2003). Partial correlation analysis for the identification of synaptic connections. Biol. Cybernet. 89 289–302.
  • Friston, K., Frith, C., Liddle, P. and Frackowiak, R. (1993). Functional connectivity: The principal-component analysis of large (pet) data sets. Journal of Cerebral Blood Flow and Metabolism 13 5–14.
  • Goebel, R., Roebroecka, A., Kim, D.-S. and Formisano, E. (2003). Investigating directed cortical interactions in time-resolved fmri data using vector autoregressive modeling and granger causality mapping. Magnetic Resonance Imaging 21 1251–1261.
  • Kaminski, M. and Blinowska, K. (1991). A new method of the description of the information flow in the brain structures. Biol. Cybernet. 65 203–210.
  • Kaminski, M., Ding, M., Truccolo, W. and Bressler, S. (2001). Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol. Cybernet. 85 145–157.
  • Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices. J. Multivariate Anal. 88 365–411.
  • Lee, T. (1997). A simple span selector for periodogram smoothing. Biometrika 84 965–969.
  • Lee, T. (2001). A stabilized bandwidth selection method for kernel smoothing of the periodogram. Signal Processing 81 419–430.
  • Lütkepohl, H. (1993). Introduction to Multiple Time Series Analysis. Springer, Berlin.
  • Marconi, B., Genovesio, A., Battaglia-Mayer, A., Ferraina, S., Squatrito, S., Molinari, M., Lacquaniti, F. and Caminiti, R. (2001). Eye-hand coordination during reaching. i. Anatomical relationships between parietal and frontal cortex. Cerebral Cortex 11 513–527.
  • Medkour, T., Walden, A. and Burgess, A. (2009). Graphical modelling for brain connectivity via partial coherence. J. Neurosci. Methods 180 374–383.
  • Ombao, H., Raz, J., Strawderman, R. and von Sachs, R. (2001). A simple generalised crossvalidation method of span selection for periodogram smoothing. Biometrika 88 1186–1192.
  • Ombao, H. and van Bellegem, S. (2008). Coherence analysis: A linear filtering point of view. IEEE Trans. Signal Process. 56 2259–2266.
  • Percival, D. B. and Walden, A. T. (1993). Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. Cambridge Univ. Press, Cambridge.
  • Salvador, R., Suckling, J., Schwarzbauer, C. and Bullmore, E. (2005). Undirected graphs of frequency-dependent functional connectivity in whole-brain networks. Philos. Trans. Roy. Soc. B 360 937–946.
  • Schlögl, A. and Suppa, G. (2006). Analyzing event-related eeg data with multivariate autoregressive parameters. Progress in Brain Research 159 135–147.
  • Thompson, W. and Siegle, G. (2009). A stimulus-locked vector autoregressive model for slow event-related fmri designs. NeuroImage 46 739–748.