The Annals of Applied Statistics

Quantum Monte Carlo simulation

Yazhen Wang

Full-text: Open access


Contemporary scientific studies often rely on the understanding of complex quantum systems via computer simulation. This paper initiates the statistical study of quantum simulation and proposes a Monte Carlo method for estimating analytically intractable quantities. We derive the bias and variance for the proposed Monte Carlo quantum simulation estimator and establish the asymptotic theory for the estimator. The theory is used to design a computational scheme for minimizing the mean square error of the estimator.

Article information

Ann. Appl. Stat., Volume 5, Number 2A (2011), 669-683.

First available in Project Euclid: 13 July 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Asymptotic theory estimation Monte Carlo qubit quantum computation quantum statistics


Wang, Yazhen. Quantum Monte Carlo simulation. Ann. Appl. Stat. 5 (2011), no. 2A, 669--683. doi:10.1214/10-AOAS406.

Export citation


  • Abrams, D. S. and Lloyd, S. (1997). Simulation of many-body Fermi systems on a quantum computer. Phys. Rev. Lett. 79 2586–2589.
  • Altland, A. and Simons, B. (2006). Interaction Effects in the Tight-Binding System. Condensed Matter Field Theory. Cambridge Univ. Press.
  • Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. and Head-Gordon, M. (2005). Simulated quantum computation of molecular energies. Science 309 1704.
  • Barndorff-Nielsen, O. E., Gill, R. and Jupp, P. E. (2003). On quantum statistical inference (with discussion). J. Roy. Statist. Soc. Ser. B 65 775–816.
  • Boghosian, B. M. and Taylor, W. (1998). Simulating quantum mechanics on a quantum computer. Phys. D 120 30–42.
  • Clarke, J. and Wilhelm, F. (2008). Superconducting quantum bits. Nature 453 1031–1042.
  • Deutsch, D. (1985). Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. Roy. Soc. London Ser. A 400 97–117.
  • DiCarlo, L., Chow, J. M., Gambetta, J. M., Bishop, L. S., Johnson, B. R., Johnson, B. R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S. M. and Schoelkopf, R. J. (2009). Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460 240–244.
  • DiVincenzo, D. P. (1995). Quantum computation. Science 270 255–261.
  • Dziarmaga, J. (2005). Dynamics of a quantum phase transition: Exact solution of the quantum Ising model. Phys. Rev. Lett. 95 245701.
  • Feynman, R. P. (1982). Simulating physics with computers. Int. J. Theor. Phys. 21 467–488.
  • Holevo, A. S. (1982). Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam.
  • Kato, T. (1978). Trotter’s product formula for an arbitrary pair of self-adjoint contraction semigroups. In Topics in Functional Analysis (Essays Dedicated to M. G. Krein on the Occasion of His 70th Birthday). Adv. in Math. Suppl. Stud. 3 185–195. Academic Press, Boston, MA.
  • Kou, S. (2009). A selective view of stochastic inference and modeling problems in nanoscale biophysics. Sci. China A 52 1181–1211.
  • Lloyd, S. (1996). Universal quantum simulators. Science 273 1073–1078.
  • Nielsen, M. and Chuang, I. (2000). Quantum Computation and Quantum Information. Cambridge Univ. Press, Cambridge.
  • Sakurai, J. J. (1995). Modern Quantum Mechanics. Addison-Wesley, Reading, MA.
  • Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. In Proc. 35th Symp. on Foundations of Computer Science 124–134. IEEE Comput. Soc. Press, Los Alamitos, CA.
  • Sornborger, A. T. and Stewart, E. D. (1999). Higher order methods for simulations on quantum computers. Phys. Rev. Lett. 60 1956–1965.
  • Trotter, H. F. (1959). On the product of semi-groups of operators. Proc. Amer. Math. Soc. 10 545–551.
  • Waldner, J. B. (2007). Nanocomputers and Swarm Intelligence. ISTE, London.
  • Zalka, C. (1998). Simulating a quantum systems on a quantum computer. Proc. Roy. Soc. London Ser. A 454 313–322.