The Annals of Applied Statistics

A dynamic Bayesian nonlinear mixed-effects model of HIV response incorporating medication adherence, drug resistance and covariates

Yangxin Huang, Hulin Wu, Jeanne Holden-Wiltse, and Edward P. Acosta

Full-text: Open access

Abstract

HIV dynamic studies have contributed significantly to the understanding of HIV pathogenesis and antiviral treatment strategies for AIDS patients. Establishing the relationship of virologic responses with clinical factors and covariates during long-term antiretroviral (ARV) therapy is important to the development of effective treatments. Medication adherence is an important predictor of the effectiveness of ARV treatment, but an appropriate determinant of adherence rate based on medication event monitoring system (MEMS) data is critical to predict virologic outcomes. The primary objective of this paper is to investigate the effects of a number of summary determinants of MEMS adherence rates on virologic response measured repeatedly over time in HIV-infected patients. We developed a mechanism-based differential equation model with consideration of drug adherence, interacted by virus susceptibility to drug and baseline characteristics, to characterize the long-term virologic responses after initiation of therapy. This model fully integrates viral load, MEMS adherence, drug resistance and baseline covariates into the data analysis. In this study we employed the proposed model and associated Bayesian nonlinear mixed-effects modeling approach to assess how to efficiently use the MEMS adherence data for prediction of virologic response, and to evaluate the predicting power of each summary metric of the MEMS adherence rates. In particular, we intend to address the questions: (i) how to summarize the MEMS adherence data for efficient prediction of virologic response after accounting for potential confounding factors such as drug resistance and covariates, and (ii) how to evaluate treatment effect of baseline characteristics interacted with adherence and other clinical factors. The approach is applied to an AIDS clinical trial involving 31 patients who had available data as required for the proposed model. Results demonstrate that the appropriate determinants of MEMS adherence rates are important in order to more efficiently predict virologic response, and investigations of adherence to ARV treatment would benefit from measuring not only adherence rate but also its summary metric assessment. Our study also shows that the mechanism-based dynamic model is powerful and effective to establish a relationship of virologic responses with medication adherence, virus resistance to drug and baseline covariates.

Article information

Source
Ann. Appl. Stat., Volume 5, Number 1 (2011), 551-577.

Dates
First available in Project Euclid: 21 March 2011

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1300715202

Digital Object Identifier
doi:10.1214/10-AOAS376

Mathematical Reviews number (MathSciNet)
MR2810409

Zentralblatt MATH identifier
1220.62138

Keywords
Bayesian mixed-effects models confounding factors HIV dynamics longitudinal data MEMS adherence assessment time-varying drug efficacy virus resistance

Citation

Huang, Yangxin; Wu, Hulin; Holden-Wiltse, Jeanne; Acosta, Edward P. A dynamic Bayesian nonlinear mixed-effects model of HIV response incorporating medication adherence, drug resistance and covariates. Ann. Appl. Stat. 5 (2011), no. 1, 551--577. doi:10.1214/10-AOAS376. https://projecteuclid.org/euclid.aoas/1300715202


Export citation

References

  • Acosta, E. P., Wu, H., Walawander, A., Eron, J., Pettinelli, C., Yu, S., Neath, D., Ferguson, E., Saah, A. J., Kuritzkes, D. R., Gerber, J. G., for the Adult ACTG 5055 Protocol Team (2004). Comparison of two indinavir/ritonavir regimens in treatment-experienced HIV-infected individuals. Journal of Acquired Immune Deficiency Syndromes 37 1358–1366.
  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In 2nd International Symposium on Information Theory (B. N. Petrov and F. Csáki, eds.) 267–281. Akadémiai Kiadó, Budapest.
  • Arnsten, J. H., Demas, P. A., Farzadegan, H. et al. (2001). Antiretroviral therapy adherence and viral suppression in HIV-infected drug users: Comparison of self-report and electronic monitoring. Clin. Infect. Dis. 33 1417–1423.
  • Bonhoeffer, S., Lipsitch, M. and Levin, B. R. (1997). Evaluating treatment protocols to prevent antibiotic resistance. Proc. Natl. Acad. Sci. USA 94 12106–12111.
  • Bonhoeffer, S., May, R. et al. (1997). Viral dynamics and drug therapy. Proc. Natl. Acad. Sci. USA 94 6971–6976.
  • Bova, C. A., Fennie, K. P., Knafl, G. J. et al. (2005). Use of electronic monitoring devices to measure antiretroviral adherence: Practical considerations. AIDS Behav. 9 103–110.
  • Carroll, R. J., Ruppert, D. and Stefanski, L. A. (1995). Measurement Error in Nonlinear Models. Chapman and Hall, London.
  • Cobelli, C., Lepschy, A. and Jacur, G. R. (1979). Identifiability of compartmental systems and related structural properties. Math. Biosci. 44 1–18.
  • Davidian, M. and Giltinan, D. M. (1995). Nonlinear Models for Repeated Measurement Data. Chapman and Hall, London.
  • Gabrielsson, J. and Weiner, D. (2000). Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Applications. Apotekarsocieteten, Stockholm.
  • Gamerman, D. (1997). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman and Hall, London.
  • Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 398–409.
  • Ghosh, P., Branco, M. D. and Chakraborty, H. (2007). Bivariate random effect model using skew normal distribution with application to HIV-RNA. Statist. Med. 26 1255–1267.
  • Gilks, W. R., Richardson, S. and Spiegelhalter, D. J., eds. (1995). Markov Chain Monte Carlo in Practice. Chapman and Hall, London.
  • Hammer, S. M., Vaida, F. et al. (2002). Dual vs single protease inhibitor therapy following antiretroviral treatment failure: A random trial. J. Amer. Med. Assoc. 288 169–180.
  • Han, C., Chaloner, K. and Perelson, A. S. (2002). Bayesian analysis of a population HIV dynamic model. In Case Studies in Bayesian Statistics (C. Gatsoiquiry, R. E. Kass, A. Carriquiry, A. Gelman, D. Higdon, D. K. Pauler and I. Verdinellinis, eds.) 6 223–237. Springer, New York.
  • Haubrich, R. H., Little, S. J., Currier, J. S. et al. (1999). The value of patient-reported adherence to antiretroviral therapy in predicting virologic and immunologogic response. AIDS 13 1099–1107.
  • Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M. and Markowitz, M. (1995). Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373 123–126.
  • Huang, Y. and Dagne, G. (2010). Skew-normal Bayesian nonlinear mixed-effects models with application to AIDS studies. Statist. Med. 29 2384–2398.
  • Huang, Y., Holden-Wiltse, J., Rosenkranz, S. L., Eron, J. J., Hammer, S. M., Mellors, J. W. and Wu, H. (2008). Modeling adherence of protease inhibitors for prediction of virologic response in HIV-1 infected patients: Comparison between adherence measurements by MEMS and questionnaire. Technical report, Department of Epidemiology and Biostatistics, Univ. South Florida, Tampa, FL.
  • Huang, Y., Liu, D. and Wu, H. (2006). Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system. Biometrics 62 413–423.
  • Huang, Y., Rosenkranz, S. L. and Wu, H. (2003). Modeling HIV dynamics and antiviral responses with consideration of time-varying drug exposures, sensitivities and adherence. Math. Biosci. 184 165–186.
  • Huang, Y. and Wu, H. (2006). A Bayesian approach for estimating antiviral efficacy in HIV dynamic model. J. Appl. Statist. 33 155–174.
  • Ickovics, J. R. and Meisler, A. W. (1997). Adherence in AIDS clinical trial: A framework for clinical research and clinical care. J. Clin. Epid. 50 385–391.
  • IMSL MATH/LIBRARY (1994). FORTRAN Subroutines for Mathematical Applications, Vol. 2. Visual Numerics, Houston.
  • Kastrissios, H., Suarez, J. R., Katzenstein, D. et al. (1998). Characterizing patterns of drug-taking behavior with a multiple drug regimen in an AIDS clinical trial. AIDS 12 2295–2303.
  • Knafl, G. J., Fennie, K. P., Bova, C. et al. (2004). Electronic monitoring device event modeling on an individual-subject basis using adaptive Poisson regression. Statist. Med. 23 783–801.
  • Labbé, L. and Verotta, D. (2006). A nonlinear mixed effect dynamic model incorporating prior exposure and adherence to treatment to describe long-term therapy outcome in HIV-patients. J. Pharmacokinet. Pharmacodyn. 33 519–542.
  • Levine, A. J., Hinkin, C. H., Marion, S. et al. (2006). Adherence to antiretroviral medications in HIV: Differences in data collected via self-report and electronic monitoring. Health Psychol. 25 329–335.
  • Liu, H., Miller, L. G., Golin, C. E. et al. (2007). Repeated measures analyses of dose timing of antiretroviral medication and its relationship to HIV virologic outcomes. Statist. Med. 26 991–1007.
  • Molla, A., Korneyeva, M. et al. (1996). Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nat. Medic. 2 760–766.
  • Notermans, D. W., Goudsmit, J., Danner, S. A. et al. (1998). Rate of HIV-1 decline following antiretroviral therapy is related to viral load at baseline and drug regimen. AIDS 12 1483–1490.
  • Nowak, M. A., Bonhoeffer, S., Clive, L., Balfe, P., Semple, M., Kaye, S., Tenant-Flowers, M. and Tedder, R. (1995). HIV results in the frame. Nature 375 193.
  • Nowak, M. A., Lloyd, A. et al. (1997). Viral dynamics of primary viremia and antiretroviral therapy in simian immunodeficiency virus infection. J. Virol. 71 7518–7525.
  • Nowak, M. A. and May, R. M. (2000). Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford Univ. Press, Oxford.
  • Paterson, D. L., Swindells, S., Mohr, J., Brester, M., Vergis, E. N., Squler, C., Wagener, M. M. and Singh, N. (2000). Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. J. Internal Med. 133 21–30.
  • Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M. and Ho, D. D. (1996). HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 271 1582–1586.
  • Perelson, A. S., Essunger, P., Cao, Y., Vesanen, M., Hurley, A., Saksela, K., Markowitz, M. and Ho, D. D. (1997). Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387 188–191.
  • Perelson, A. S. and Nelson, P. W. (1999). Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41 3–44.
  • Pfister, M., Labbe, L., Hammer, S. M., Mellors, J., Bennett, K. K., Rosenkranz, S. L. and Sheiner, L B. and AIDS Clinical Trial Group Protocol 398 Investigators (2003). Population Pharmacokinetics and Pharmacodynamics of Efavirenz, Nelfinavir, and Indinavir: Adult AIDS Clinical Trial Group Study 398. Antimicrobial Agents and Chemoterapy 47 130–137.
  • Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461–464.
  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit. J. Roy. Statist. Soc. Ser. B 64 583–639.
  • Stafford, M. A. et al. (2000). Modeling plasma virus concentration during primary HIV infection. J. Theoret. Biol. 203 285–301.
  • Verbeke, G. and Lesaffre, E. (1996). A linear mixed-effects model with heterogeneity in random-effects population. J. Amer. Statist. Assoc. 91 217–221.
  • Verotta, D. (2005). Models and estimation methods for clinical HIV-1 data. J. Comput. Appl. Math. 184 275–300.
  • Vrijens, B., Goetghebeur, E., de Klerk, E., Rode, R., Mayer, S. and Urquhart, J. (2005). Modeling the association between adherence and viral load in HIV-infected patients. Statist. Med. 24 2719–2731.
  • Wainberg, M. A. et al. (1996). Effectiveness of 3TC in HIV clinical trials may be due in part to the M184V substition in 3TC-resistant HIV-1 reverse transcriptase. AIDS 10(Suppl.), S3–S10.
  • Wakefield, J. C., Smith, A. F. M., Racine-Poon, A. and Gelfand, A. E. (1994). Bayesian analysis of linear and non-linear population models using the Gibbs sampler. Appl. Statist. 43 201–221.
  • Wakefield, J. C. (1996). The Bayesian analysis to population pharmacokinetic models. J. Amer. Statist. Assoc. 91 62–75.
  • Wei, X., Ghosh, S. K., Taylor, M. E., Johnson, V. A., Emini, E. A., Deutsch, P., Lifson, J. D., Bonhoeffer, S., Nowak, M. A., Hahn, B. H., Saag, M. S. and Shaw, G. M. (1995). Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373 117–122.
  • Wu, H., Ding, A. A. and de Gruttola, V. (1998). Estimation of HIV dynamic parameters. Statist. Med. 17 2463–2485.
  • Wu, H. and Ding, A. A. (1999). Population HIV-1 dynamics in vivo: Applicable models and inferential tools for virological data from AIDS clinical trials. Biometrics 55 410–418.
  • Wu, H., Huang, Y. et al. (2005). Modeling antiretroviral response: Effects of drug potency, pharmacokinetics, adherence and drug resistance. Journal of Acquired Immune Deficiency Syndromes 39 272–283.
  • Wu, L. (2002). A joint model for nonlinear mixed-effects models with censoring and covariates measured with error, with application to AIDS studies. J. Amer. Statist. Assoc. 97 955–964.
  • Zhu, L. and Carlin, B. P. (2000). Comparing hierarchical models for spatio-temporally misaligned data using the deviance information criterion. Stat. Med. 19 2265–2278.